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The predisposition to neuropsychiatric disease involves a
complex, polygenic, and pleiotropic genetic architecture.
However, little is known about how genetic variants impart
brain dysfunction or pathology. We used transcriptomic
profiling as a quantitative readout of molecular brain-based
phenotypes across five major psychiatric disorders—autism,
schizophrenia, bipolar disorder, depression, and alcoholism—
compared with matched controls. We identified patterns of
shared and distinct gene-expression perturbations across
these conditions. The degree of sharing of transcriptional
dysregulation is related to polygenic (single-nucleotide
polymorphism–based) overlap across disorders, suggesting

a substantial causal genetic component. This comprehensive
systems-level view of the neurobiological architecture of major
neuropsychiatric illness demonstrates pathways of molecular
convergence and specificity.
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Despite remarkable success identifying genetic risk factors
for major psychiatric disorders, it remains unknown how
genetic variants interact with environmental and epigenetic
risk factors in the brain to impart risk for clinically distinct
disorders (1, 2). We reasoned that brain transcriptomes—a
quantitative, genome-wide molecular phenotype (3)—would
allow us to determine whether disease-related signatures
are shared across major neuropsychiatric disorders with
distinct symptoms and whether these patterns reflect ge-
netic risk.

We first analyzed published gene-expression microarray
studies of the cerebral cortex across five major neuropsy-
chiatric disorders (3–11) using 700 cerebral cortical samples
from subjects with autism (ASD) (n 5 50 samples), schizo-
phrenia (SCZ) (n 5 159), bipolar disorder (BD) (n 5 94),
depression (MDD) (n5 87), alcoholism (AAD) (n5 17), and
matched controls (n 5 293) (12). These disorders are prev-
alent and disabling, contributing substantially to global dis-
ease burden. Inflammatory bowel disease (IBD) (n 5 197)
was included as a non-neural comparison.

Individual data sets underwent stringent quality control
and normalization (Fig. 1) (12), including rebalancing so as
to alleviate confounding between diagnosis and biological
(such as age and sex) or technical (such as post mortem
interval, pH, RNA integrity number, batch, and 3’ bias)
covariates (figs. S1 and S2). Transcriptome summary statistics
for each disorder were computed with a linear mixed-effects
model so as to account for any sample overlap across studies

(12). Comparison of differential gene expression (DGE) log2
fold change (log2FC) signatures revealed a significant over-
lap among ASD, SCZ, and BD and SCZ, BD, and MDD (all
Spearman’s r$ 0.23,P, 0.05, 40,000 permutations) (Fig. 2A).
The regression slopes between ASD, BD, andMDD log2-FC
effect sizes compared with SCZ (5.08, 0.99, and 0.37,
respectively) indicate a gradient of transcriptomic se-
verity with ASD . SCZ � BD . MDD (Fig. 2B). To ensure
robustness, we compared multiple methods for batch cor-
rection, probe summarization, and feature selection, in-
cluding use of integrative correlations, none of which
changed the qualitative observations (fig. S3) (12). Results
were also unaltered after first regressing gene-level RNA
degradation metrics, suggesting that systematic sample
quality issues were unlikely to drive these correlations
(fig. S3). Further, the lack of (or negative) overlap be-
tween AAD and other disorders suggests that similarities
are less likely due to comorbid substance abuse, poor
overall general health, or general brain-related post-mortem
artefacts.

Disease-specific DGE summary statistics (data table S1)
provide human in vivo benchmarks for determining the
relevance of model organisms, in vitro systems, or drug ef-
fects (13, 14). We identified a set of concordantly down-and
up-regulated genes across disorders (fig. S4) as well as those
with more specific effects. Complement component 4A (C4A),
the top genome-wide association study (GWAS)–implicated
SCZ disease gene (15), was significantly up-regulated in SCZ
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(log2FC 5 0.23, P 5 6.9 3 1026) and in ASD [RNA se-
quencing (RNA-seq); log2FC 5 0.91, P 5 0.014] (data table
S1) but not in BD, MDD, or AAD. To investigate potential
confounding by psychiatric medications, we compared dis-
ease signatures with those from nonhuman primates treated
with acute or chronic dosing of antipsychotic medications.
Significant negative overlap (fig. S5) (12) was observed, in-
dicating that antipsychotics are unlikely to drive, but rather
may partially normalize, these transcriptomic alterations,
whereas the psychotomimetic phencyclidine partially reca-
pitulates disease signatures.

To validate that these transcriptomic relationships are
generalizable, we generated independent RNA-seq data sets
for replication for three out of the five disorders (fig. S6)
(12). We identified 1099 genes whose DGE is replicated in
ASD [odds ratio (OR) 6.4, P5 3.33 102236, Fisher’ sexact test]
(table S2), 890 genes for SCZ (BrainGVEX; OR 4.5, P 5 7.6 3
102155), and 112 genes for BD (BrainGVEX; OR 3.9, P 5 4.6 3
10226), which is likely due to the relatively smaller RNA-seq
sample size for BD (12). We observed similarly high levels of
transcriptomic overlap among ASD, SCZ, and BD and a sim-
ilar gradient of transcriptomic severity (Fig. 2C and fig. S7).
The SCZ and BD patterns were further replicated in the
CommonMind data set, although gene-level overlap was
lower (fig. S7) (12, 16). The ASD signature was qualita-
tively consistent across the four major cortical lobules,

indicating that this pattern is not caused by regional differ-
ences (Fig. 2D).

To more specifically characterize the biological path-
ways involved, we performed robust weighted gene coex-
pression network analysis (rWGCNA) (12, 17), identifying
several shared and disorder specific coexpression modules
(Fig. 3). Modules were stable (fig. S8), showed greater
association with disease than other biological or techni-
cal covariates (fig. S9), and were not dependent on correc-
tions for covariates or batch effects (fig. S10). Moreover,
each module was enriched for protein-protein interac-
tions (fig. S8) and brain enhancer-RNA co-regulation (fig.
S11) derived from independent data, which provides an-
chors for dissecting protein complexes and regulatory
relationships.

An astrocyte-related module (CD4 and hubs GJA1 and
SOX9) was broadly up-regulated in ASD, BD, and SCZ [false
discovery rate (FDR)–corrected P , 0.05] (Fig. 3C and data
table S2) (12) and enriched for glial cell differentiation
and fatty-acid metabolism pathways. By contrast, a mod-
ule strongly enriched for microglial markers (CD11) was
up-regulated specifically in ASD (twosided t test, FDR-
corrected P 5 4 3 1029). Hubs include canonical micro-
glial markers (HLA-DRA and AIF1), major components of
the complement. system (C1QA and C1QB), and TYROBP,
a microglial signaling adapter protein (18). Results fit with

FIGURE 1. Experimental Rationale and Designa

a A color version of the figure, as originally published, appears in the online version of this article (focus.psychiatryonline.org).
A Model of psychiatric disease pathogenesis.
B Flowchart of the cross-disorder transcriptome analysis pipeline (12). Cortical gene expression data sets were compiled from cases of ASD (n 5
50 samples), SCZ (n 5 159), BD (n 5 94), MDD (n 5 87), AAD (n 5 17), and matched non-psychiatric controls (n 5 293) (table S1) (12).
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convergent evidence for microglial up-regulation in ASD
and an emerging understanding that microglia play a
critical role regulating synaptic function during neuro-
development (19).

One module, CD2, was up-regulated specifically in MDD
(FDR-corrected P 5 0.009) (data table S2) and was en-
riched for G protein–coupled receptors, cytokine-cytokine
interactions, and hormone activity pathways, suggesting a link
between inflammation and dysregulation of the hypothalamic-
pituitary (HPA) axis, which is consistent with current models
of MDD pathophysiology (20). Several modules annotated
as neuronal/mitochondrial were down-regulated across ASD,
SCZ, and BD (CD1, CD10, and CD13) (Fig. 3C and data table
S2) (12). The overlap of CD10 with a mitochondrial gene-
enriched module previously associated with neuronal firing
rate (21) links energetic balance, synaptic transmission, and
psychiatric disease (data table S2).

The transcriptome may reflect the cause or the conse-
quence of a disorder. To refine potential causal links, we

compared single-nucleotide polymorphism (SNP)–based
genetic correlations between disease pairs (22) with their
corresponding transcriptome overlap. SNP coheritability
was significantly correlated with transcriptome overlap
across the same disease pairs (Spearman’s r 5 0.79, 95% con-
fidence interval 0.43 to 0.93, P5 0.0013) (Fig. 2C), suggesting
that a major component of these gene-expression patterns
reflects biological processes coupled to underlying genetic
variation.

To determine how disease-associated variants may in-
fluence specific biological processes, we investigated
whether any modules harbor genetic susceptibility for
specific disorders or for relevant cognitive or behavioral
traits (12). We identified significant enrichment among several
of the down-regulated, neuronal coexpression modules (CD1,
CD10, and CD13) for GWAS signal from SCZ and BD, as
well as for educational attainment and neuroticism
(FDR-corrected P , 0.05, Spearman) (Fig. 4A) (12). We
also observed enrichment for the three down-regulated

FIGURE 2. Cortical Gene Expression Patterns Overlapa

a A color version of the figure, as originally published, appears in the online version of this article (focus.psychiatryonline.org).
A Rank order of microarray transcriptome similarity for all disease pairs, as measured with Spearman’s correlation of differential expression log2FC
values.
B Comparison of the slopes among significantly associated disease pairs indicates a gradient of transcriptomic severity, with ASD . SCZ ∼ BD .
MDD.
C Overlapping gene expression patterns across diseases are correlated with shared common genetic variation, as measured with SNP coheritability
(22). The y axis shows transcriptome correlations using microarray-based (discovery, red) and RNA-seq (replication, blue) data sets.
D RNA-seq across all cortical lobes in ASD replicates microarray results and demonstrates a consistent transcriptomic pattern. Spearman’s r is
shown for comparison between microarray and region-specific RNA-seq replication data sets (all P , 10214). Plots show mean 6 SEM. *P , 0.05,
**P , 0.01, ***P , 0.001.
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FIGURE 3. Network Analysis Identifies Modules of Coexpressed Genes Across Disease

A Network dendrogram from coexpression topological overlap of genes across disorders. Color bars show correlation of gene expression with
disease status, biological, and technical covariates.
B Multidimensional scaling plot demonstrates relationship between modules and clustering by cell-type relationship.
C Module-level differential expression is perturbed across disease states. Plots show b values from linear mixed-effect model of module eigengene
association with disease status (FDR-corrected #P , 0.1, *P , 0.05, **P , 0.01, ***P , 0.001).
D The top 20 hub genes are plotted for modules most disrupted in disease. A complete list of genes’ module membership (kME) is provided in data
table S2. Edges are weighted by the strength of correlation between genes.
E and F Modules are characterized by E Gene Ontology enrichment (top two pathways shown for each module) and F cell-type specificity, on the
basis of RNA-seq of purified cell populations from healthy human brain samples (25).
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neuronal coexpression modules in the iPSYCH Consortium
(23) ASD GWAS cohort (Fig. 4A and table S3) (12). By
contrast, these modules showed no enrichment for MDD,
AAD, or IBD. Further, none of the microglial- or astrocyte-
specific modules showed psychiatric GWAS enrichment.
Extending this analysis to disease-associated rare variants
(data table S3) (2, 12), we found that the CD1 neuronal
module was enriched for genes harbouring rare, non-
synonymous de novo mutations identified in ASD (OR
1.36, FDR-corrected P 5 0.03, logistic regression) and SCZ
cases (OR 1.82, FDR-corrected P 5 0.014) but not unaffected
controls (Fig. 4B). A similar CD1-enrichment was observed
for genes affected by rare, recurrent copy-number variation
(CNV) in ASD (OR 2.52, FDR-corrected P 5 0.008) and
SCZ (OR 2.46, FDR-corrected P 5 0.014). These results
suggest convergence of common and rare genetic variation
acting to down-regulate synaptic function in ASD and
SCZ.

We next used LD score regression (24) to partition
GWAS heritability (Fig. 4C and data table S4) into the con-
tribution from SNPs located within genes from each module
(Fig. 4D) (12). CD1 again showed significant enrichment for
SCZ (2.5-fold, FDR-corrected P5 8.93 10211), BD (3.9 fold,
FDR-corrected P, 0.014), and educational attainment (1.9-fold,
FDR-corrected P , 0.0008; x2 test) GWAS, accounting for
∼10% of SNP-based heritability within each data set, despite
containing only 3% of the SNPs. This illustrates how gene
network analysis can begin to parse complex patterns of
common variants, each of small effect size, to implicate
specific biological roles for common variant risk across
neuropsychiatric disorders.

These data provide a quantitative, genome-wide char-
acterization of the cortical pathology across five major
neuropsychiatric disorders, providing a framework for
identifying the responsible molecular signaling path-
ways and interpreting genetic variants implicated in

FIGURE 4. Down-regulated Neuronal Modules are Enriched for Common and Rare Genetic risk factorsa

a A color version of the figure, as originally published, appears in the online version of this article (focus.psychiatryonline.org).
A Significant enrichment is observed for SCZ-, ASD-, and BD-associated common variants from GWAS among neuron/synapse and mitochondrial
modules (12). GWAS data sets are listed in table S3.
B The CD1 neuronal module shows significant enrichment for ASD- and SCZ-associated nonsynonymous de novo variants from whole-exome
sequencing. The number of genes affected by different classes of rare variants is shown in parentheses. Significance was calculated by using logis-
tic regression, correcting for gene length. P values are FDR-corrected.
C Total SNP-based heritability (liability scale for psychiatric diagnoses) calculated from GWAS by using LD-score regression.
D Proportion of heritability for each disorder or trait that can be attributed to individual coexpression modules. Significance (FDR-corrected *P ,
0.05, **P , 0.01, ***P , 0.001) is from enrichment statistics comparing the proportion of SNP heritability within the module divided by the
proportion of total SNPs represented. The CD1 module shows significant enrichment in SCZ, BD, and educational attainment.
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neuropsychiatric disease risk. We observed a gradient of
synaptic gene down-regulation, with ASD . SZ � BD.
BD and SCZ appear most similar in terms of synaptic
dysfunction and astroglial gene up-regulation, which may
represent as trocytosis, activation, or both. ASD, an early-
onset disorder, shows a distinct up-regulated microglial
signature, which may reflect the role for microglia in
regulation of synaptic connectivity during neuro-
development (19). MDD shows neither the synaptic nor
astroglial pathology but does exhibit dysregulation of HPA-
axis and hormonal signaling not observed in the other
disorders.

Our data suggest that shared genetic factors underlie a
substantial proportion of cross-disorder expression overlap.
Given that a minority of these relationships represent ex-
pression quantitative trait loci (fig. S12), most of the genetic
effects are likely acting indirectly, through a cascade of de-
velopmental and cell-cell signaling events rooted in genetic
risk. Genetic variation is also not the only driver of expres-
sion variation; there is undoubtedly a contribution from
environmental effects. Hidden confounders could introduce
a correlation structure that matches SNP-level genetic cor-
relations, but parsimony and hidden covariate correction
suggests that this is unlikely. Diagnostic misclassification
could artificially elevate shared signals, but the results are
robust to disorder removal (fig. S13), and misclassification
would not account for the substantial overlap we observed
with ASD, which has a highly distinct phenotypic trajec-
tory from later onset disorders. Last, we have replicated
broad transcriptomic and cell type–specific patterns in-
dependently for ASD, SCZ, and BD, providing an orga-
nizing pathological framework for future investigation of
the mechanisms underlying specific gene- and isoform-level
transcriptomic alterations in psychiatric disease.
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