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enetic Dissection of
Complex Traits

Medical genetics was revolutionized during the 1980s by the application of genetic mapping to locate the genes respon-
sible for simple Mendelian diseases. Most diseases and traits, however, do not follow simple inheritance patterns. Ge-
neticists have thus begun taking up the even greater challenge of the genetic dissection of complex traits. Four major
approaches have been developed: linkage analysis, allele-sharing methods, association studies, and polygenic analysis of
experimental crosses. This article synthesizes the current state of the genetic dissection of complex traits— describing

the methods, limitations, and recent applications to biological problems.

(Reprinted with permission from Science 30 September 1994; 265:2037-2048)
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Human genetics has sparked a revolution in
medical science on the basis of the seemingly im-
probable notion that one can systematically dis-
cover the genes causing inherited diseases without
any prior biological clue as to how they function.
The method of genetic mapping, by which one
compares the inheritance pattern of a trait with the
inheritance patterns of chromosomal regions, al-
lows one to find where a gene is without knowing
what it is. The approach is completely generic, be-
ing equally applicable to spongiform brain degen-
eration as to inflammartory bowel disease.

To geneticists, this revolution is really nothing
new. Genetic mapping of trait-causing genes to
chromosomal locations dates back to the work of
Sturtevant in 1913 (1). It has been a mainstay of
experimental geneticists who study fruit flies, nem-
atode worms, yeast, and maize and who developed
genetic maps containing hundreds of genetic mark-
ers that made it possible to follow the inheritance of
any chromosomal region in a controlled cross.
With the advent of recombinant DNA, genetic
mapping was carried to its logical conclusion with
the development of positional cloning-the isolation
of a gene solely on the basis of its chromosomal
location, without regard to its biochemical func-
tion. Positional cloning was invented by Bender
and colleagues, who used it to isolate the bithorax
complex in Drosophila (2), and it rapidly became a
routine technique in flies and worms.

Despite its central role in experimental organ-
isms, genetic mapping hardly figured in the study
of humans throughout most of the century. There
wetre two reasons: the lack of an abundant supply of
genetic markers with which to study inheritance,
and the inability to arrange human crosses to suit
experimental purposes. The key breakthrough was

the recognition that naturally occurring DNA se-
quence variation provided a virtually unlimited
supply of genetic markers-an idea first conceived of
by Botstein and colleagues for yeast crosses (3) and
subsequently for human families (4). With highly
polymorphic genetic markers, one could trace in-
heritance in existing human pedigrees as if one had
set up the crosses in the laboratory. These ideas
soon led to an explosion of interest in the genetic
mapping of rare human diseases having simple
Mendelian inheritance. More than 400 such dis-
eases have been genetically mapped in this manner,
and nearly 40 have been positionally cloned (5).

Human geneticists are now beginning to explore
a new genetic frontier, driven by an inconvenient
reality: Most traits of medical relevance do not fol-
low simple Mendelian monogenic inheritance.
Such “complex” traits include susceptibilities to
heart disease, hypertension, diabetes, cancer, and
infection. The genetic dissection of complex traits
is attracting many investigators with the promise of
shedding light on old problems and is spawning a
variety of analytical methods. The emerging issues
turn out to be relevant not just to medical genetics,
but to fundamental studies of mammalian develop-
ment and applied work in agricultural improve-
ment. The field is still at an early stage, but it is
ready to explode much as it has done in recent years
with the analysis of simple traits. The purpose of
this article is to synthesize the key challenges and
methods, to highlight some enlightening examples,
and to identify further needs.

COMPLEX TRAITS

The term “complex trait” refers to any phenotype
that does not exhibit classic Mendelian recessive or
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dominant inheritance attributable to a single gene
locus. In general, complexities arise when the sim-
ple correspondence between genotype and pheno-
type breaks down, either because the same genotype
can result in different phenotypes (due to the effects
of chance, environment, or interactions with other
genes) or different genotypes can result in the same
phenotype.

To some extent, the category of complex traits is
all-inclusive. Even the simplest genetic disease is
complex, when looked at closely. Sickle cell anemia
is a classic example of a simple Mendelian recessive
trait. Yet, individuals carrying identical alleles at the
B-globin locus can show markedly different clinical
courses, ranging from early childhood mortality to
a virtually unrecognized condition at age 50 (6).
The trait of severe sickle cell anemia is thus com-
plex, being influenced by multiple genetic factors
including a mapped X-linked locus and an inferred
autosomal locus that can increase fetal hemoglobin
amounts and thereby partially ameliorate the dis-
ease (7).

Itis often impossible to find a genetic marker that
shows perfect cosegregation with a complex trait.
The reasons for this can be ascribed to a few basic
problems.

Incomplete penetrance and phenocopy. Some
individuals who inherit a predisposing allele may
not manifest the disease (incomplete penetrance),
whereas others who inherit no predisposing allele
may nonetheless get the disease as a result of envi-
ronmental or random causes (phenocopy). Thus,
the genotype at a given locus may affect the proba-
bility of disease, but not fully determine the out-
come. The penetrance function f{G), specifying the
probability of disease for each genotype G, may also
depend on nongenetic factors such as age, sex, en-
vironment, and other genes. For example, the risk
of breast cancer by ages 40, 55, and 80 is 37%,
66%, and 85% in a woman carrying a mutation at
the BRCAI locus as compared with 0.4%, 3%, and
8% in a noncarrier (8). In such cases, genetic map-
ping is hampered by the fact that a predisposing
allele may be present in some unaffected individu-
als or absent in some affected individuals.

Genetic (or locus) heterogeneity. Mutations in
any one of several genes may result in identical phe-
notypes, such as when the genes are required for a
common biochemical pathway or cellular struc-
ture. This poses no problem in experimental organ-
isms, because geneticists can arrange to work with
pure-breeding strains and perform crosses to assign
mutations to complementation classes. In contrast,
medical geneticists typically have no way to know
whether two patients suffer from the same disease
for different genetic reasons, at least until the genes
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are mapped. Examples of genetic heterogeneity in
humans include polycystic kidney disease (9), ear-
ly-onset Alzheimer’s disease (10), maturity-onset
diabetes of the young (11), hereditary nonpolyposis
colon cancer (12), ataxia telangiectasia (13), and
xeroderma pigmentosum (14). Retinitis pigmen-
tosa, involving retinal degeneration, apparently can
result from mutations in any of at least 14 different
loci (15), and Zellweger syndrome, involving the
failure of peroxisome biosynthesis, from mutations
in any of 13 loci (16). Genetic heterogeneity ham-
pers genetic mapping, because a chromosomal re-
gion may cosegregate with a disease in some fami-
lies but not in others. Genetic heterogeneity should
be distinguished from allelic heterogeneity, in
which there are multiple disease-causing mutations
at a single gene. Allelic heterogeneity tends not to
interfere with gene mapping.

Polygenic inheritance. Some traits may require
the simultaneous presence of mutations in multiple
genes. Polygenic traits may be classified as discrete
traits, measured by a specific outcome (for example,
development of type I diabetes or death from myo-
cardial infarction), or quantitative traits, measured
by a continuous variable [for example, diastolic
blood pressure, fasting glucose concentrations, or
immunoglobulin E (IgE) titers] whose level may be
set by the combined action of individual quantita-
tive trait loci. Discrete traits may represent a thresh-
old effect, produced whenever an underlying quan-
titative variable, influenced by muldple genes,
exceeds a critical threshold, or a pure synthetic ef-
fect, requiring the simultaneous and joint action of
each of several mutations.

Polygenic inheritance is easily demonstrated in
animal crosses, in the transmission pattern of quan-
titative traits such as blood pressure (17), and in the
pervasive “genetic background” effects that repre-
sent the action of modifier genes. For example, a
mutation in the mouse Apc gene causes numerous
intestinal neoplasias and early death in B6 mice but
has barely noticeable effects when bred into an
AKR strain (18). More generally, the phenotype of
“knockout mice” may vary dramatically on differ-
ent strain backgrounds, pointing to previously un-
known interacting genes.

Polygenic inheritance is harder to demonstrate
directly in humans, but it is surely no less common.
One form of retinitis pigmentosa was shown to be
due to strict digenic inheritance, requiring the pres-
ence of heterozygous mutations at the peripherin/
RDS and ROMI genes (19) (whose encoded pro-
teins are thought to interact in the photoreceptor
outer segment disc membranes). Some forms of
Hirschsprung disease appear to require the simul-
taneous presence of mutations on chromosomes
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13, 21, and possibly elsewhere (20). Polygenic in-
heritance complicates genetic mapping, because no
single locus is strictly required to produce a discrete
trait or a high value of a quantitative trait [exceptin
the case of a pure synthetic interaction causing a
discrete trait (21, 22)].

High frequency of disease-causing alleles.
Even a simple trait can be hard to map if disease-
causing alleles D occur at high frequency in the
population. The expected Mendelian inheritance
pattern of disease will be confounded by the prob-
lem that multiple independent copies of D may be
segregating in the pedigree [often referred to as bi-
lineality (23)] and that some individuals may be
homozygous for D [in which case one will not ob-
serve linkage between D and a specific allele at a
nearby genetic marker, because either of the two
homologous chromosomes could be passed to an
affected offspring (24)]. Late-onset Alzheimer’s dis-
ease provides an excellent example. Initial linkage
studies found weak evidence of linkage to chromo-
some 19q, but they were dismissed by many observ-
ers because the lod score (logarithm of the likeli-
hood ratio for linkage) remained relatively low, and
it was difficult to pinpoint the linkage with any
precision (25). The confusion was finally resolved
with the discovery that the apolipoprotein E type 4
allele appears to be the major causative factor on
chromosome 19. The high frequency of the allele
(~16% in most populations) had interfered with
the traditional linkage analysis (26). High fre-
quency of disease-causing alleles becomes an even
greater problem if genetic heterogeneity is also
present.

Other transmission mechanisms. Finally,
mammalian genetics has revealed additional modes
of genetic inheritance. These include mitochon-
drial inheritance (in which mitochondria pass
solely through the material germ line, and each
meiotic transmission may involve selection from a
potentially mixed population of mutant and nor-
mal organelles); imprinting (due to differential ac-
tivity of the paternal and maternal copies of a gene);
and phenomena due to the expansion of trinucle-
otide repeats such as so-called “anticipation.” These
modes of transmission pose little difficulty when
they obey strict rules (as for imprinting), but they
can complicate analysis when they lead to highly
variable transmission rates [as for some mitochon-
drial diseases or trinucleotide repeat diseases (27)]
and may require specialized methods (28).

GENETIC EPIDEMIOLOGY

Before undertaking DNA-based studies aimed at
genetic dissection, one would ideally like to infer as

much as possible about the genetic basis of a trait on
the basis of the pattern of disease incidence in fam-
ilies and populations. Such genetic epidemiology
constitutes a major field in its own right for which
excellent reviews exist (29). We focus on a few key
concepts.

Twin studies. Whereas experimental geneticists
can propagate inbred lines with isogenic genetic
constitution, the only opportunity to examine the
expression of a human trait in a fixed genetic back-
ground comes from the study of monozygotic
(MZ) twins (30). The absolute risk to an MZ twin
of an affected individual provides a direct estimate
of penetrance for a given environment.

Relative risk. The most important epidemiolog-
ical parameter is the relative risk, Ay, defined as the
recurrence risk for a relative of an affected person
divided by the risk for the general population. The
subscript R denotes the type of relation; for exam-
ple, Ao and Ng are the risks to offspring and sibs,
respectively. The magnitude of Ay is related to the
degree of concordant inheritance for genetic deter-
minants in affected relative pairs and thus is related
to the ease or difficulty of genetic mapping, as
shown by Risch (31-33). Genetic mapping is much
easier for traits with high N (for example, Ag > 10)
than for those with low \ (for example, Ag < 2). As
an illustration of the range, Ay = 500 for cystic
fibrosis; 15 for type I diabetes [of which a factor of
3 to 4 is attributable to concordance at the human
leukocyte antigen (HLA) complex]; 8.6 for schizo-
phrenia; and 3.5 for type II diabetes. For a quanti-
tative phenotype, a similar measure is the heritabil-
ity of the trait (34).

Segregation analysis. Segregation analysis in-
volves fitting a general model to the inheritance
pattern of a trait in pedigrees. Using a model in-
volving the presence of a simple Mendelian factor
in a background of multifactorial inheritance, one
tries to estimate key parameters such as the allele
frequency, penetrance, and proportion of cases ex-
plained by the Mendelian factor. An important ex-
ample is the work of Newman e# /. and other re-
searchers (35, 36) who showed that the degree of
familial clustering for breast cancer observed in
1579 nuclear families was consistent with a domi-
nantly acting rare allele (frequency = 0.06%), ac-
counting for 4% of affected women (but 20% of
affected mother-daughter pairs), in a larger back-
ground of multifactorial causation. Segregation
analysis can be extremely sensitive to biases in the
ascertainment of families [for example, if preferen-
tial inclusion of affected individuals may cause the
penetrance to be greatly overstated (37)], and it
may have litde ability to distinguish among the
many possible modes of inheritance for complex
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traits (38). Moreover, it can be especially difficult to Figure 1.
estimate the number of distinct genes influencing a
trait, except in very favorable situations (39), and to
identify penetrance parameters associated with
multiple loci (40).

Linkage analysis

DEFINING DISEASES

Given the many problems that can hamper ge-
netic dissection of complex traits, geneticists try to
stack the deck in their favor. By narrowing the def-
inition of a disease or restricting the patient popu-
lation, it is often possible to work with a trait that is

Linkage analysis involves constructing a transmission model to explain the inheri-
tance of a disease in pedigrees. The model is straightforward for simple Mendelian
traits but can become very complicated for complex traits. Linkage analysis has been
applied to hundreds of simple Mendelian traits, as well as to such situations as ge-
netic heterogeneity in breast cancer and two-gene interactions in multiple sclerosis.

more nearly Mendelian in its inheritance pattern
and more likely to be homogeneous. The extent to
which redefinition simplifies the task of genetic
mapping can be measured by the resulting increase
in the relative risk N. Although there is no guaran-
teed method to increase Ay, four criteria are often
useful.

Clinical phenotype. For example, when colon
cancer is restricted to cases with extreme polyposis,
the trait becomes a simple autosomal dominant one
which allowed positional cloning of the APC gene
on chromosome 5 (41). Other forms of colon can-
cer can be distinguished by the phenotype of repli-
cation errors in tumors (42). In studying hyperten-
sion, one can increase N by focusing on cases with
combined hypertension and hyperlipidemia (43).

Age at onset. Breast cancer and Alzheimer’s dis-
ease are rendered genetically more homogeneous by
focusing on early-onset cases [although the latter
can be caused by at least three independent loci
(44)]. Similarly, the relative risk for death from
heart attack is much greater for early-onset cases
(Ag = 7 in men and ~15 in women under age 65)
as compared with late-onset cases (\g < 2) (45).

Family history. For example, the sister of a
woman with breast cancer has a much greater risk if
her mother is also affected (35, 36). Hereditary
nonpolyposis colon cancer (12) was genetically
mapped by defining the trait to require the presence
of at least two other affected relatives.

Severity. For continuous traits, it often pays to
consider as affected only those individuals at the
extreme ends of the trait distribution. For example,
one might select families for a hypertension study
on the basis of the presence of at least one member
with blood pressure exceeding 140/90. Such selec-
tion can greatly increase the ability to map genes,
both in human families (46) and experimental
crosses (47).

Another way to improve the prospects for genetic
dissection is to focus on specific ethnic groups. Pop-
ulation genetic theory and data suggest that there
will be greater genetic and allelic homogeneity in a
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more genetically isolated group (such as Sardinians,
Basques, Finns, and Japanese) than in a large,
mixed population (such as is in New York City or
Los Angeles). Different ethnic groups may shed
light on different aspects of a disease, which might
be much harder to discern in an outbred popula-
tion. For example, it has been suggested that there
may be differences in the genetic etiology of type 11
diabetes between Mexican Americans and Scandi-
navians, with somewhat higher frequency of early
insulin resistance in the former and an early pan-
creatic beta cell defect in the latter (48). Focusing
on a highly restricted population may also offer
advantages for eventual positional cloning, because
one may be able to exploit linkage disequilibrium
for fine-structure genetic mapping (discussed be-
low).

GENETIC DISSECTIONS THE FOURFOLD
WAY

The methods available for genetic dissection of
complex traits fall neatly into four categories: link-
age analysis, allele-sharing methods, association
studies in human populations, and genetic analysis
of large crosses in model organisms such as the
mouse and rat.

LINKAGE ANALYSIS

Linkage analysis involves proposing a model to
explain the inheritance pattern of phenotypes and
genotypes observed in a pedigree (Fig. 1). It is the
method of choice for simple Mendelian traits be-
cause the allowable models are few and easily tested.
However, applications to complex traits can be
more problematic, because it may be hard to find a
precise model that adequately explains the inheri-
tance pattern.

Formally, linkage analysis consists of finding a
model M, positing a specific location for a trait-
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causing gene, that is much more likely to have pro-
duced the observed data than a null hypothesis M,
positing no linkage to a trait-causing gene in the
region. The evidence for M, versus M, is measured
by the likelihood ratio, LR = Prob (DatalM,)/Prob
(DatalM,), or, equivalently, by the lod score, Z =
log,o(LR) (49, 50).

The model M, is typically chosen from among a
family of models M(®), where ® is a parameter
vector that might specify such information as the
location of the trait-causing locus, the allele fre-
quency at the trait and marker loci, the penetrance
function, and the transmission frequencies from
parent to child. Many of these parameters may al-
ready be known (such as penetrance functions from
prior segregation analysis or marker allele frequen-
cies from population surveys). The remaining, un-
known parameters are chosen to be the maximum
likelihood (ML) estimate, that is, the value ® that
makes the data most likely to have occurred (51).
The null model M,, corresponds to a specific null
hypothesis about the parameters, @,,.

For example, the model for a simple Mendelian
recessive or dominant disease is completely speci-
fied except for the recombination frequency 6 be-
tween the disease gene and a marker; the null hy-
pothesis of nonlinkage corresponds to 8 = 50%
recombination. X

The ML model M(®) is accepted (compared
with M) if the corresponding maximum lod score
Zis large, that is, exceeds a critical threshold 7. Of
course, a crucial issue is the appropriate significance
threshold. The traditional lod score threshold has
been 3.0 (50, 52), although the appropriateness of
this choice is discussed in the section on statistical
significance.

Applications. Linkage analysis is the current
workhorse of human genetic mapping, having been
applied to hundreds of simple monogenic traits.
Linkage analysis has also been successfully applied
to genetically heterogeneous traits in some cases.
The simplest situation is when unequivocal linkage
can be demonstrated in a single large pedigree (with
Z > 3), even though other families may show no
linkage. This has been done for such diseases as
adult polycystic kidney disease, early-onset Alzhei-
mer’s disease, and psoriasis (53). If linkage cannot
be established on the basis of any single pedigree,
one can ask whether a subset of the pedigrees col-
lectively shows evidence of linkage. Of course, one
cannot simply choose those families with positive
lod scores and exclude those with negative lod
scores, as such an ex post selection criterion will
always produce a high positive lod score. Instead,
one must explicitly allow for genetic heterogeneity
within the linkage model (through the inclusion of

an admixture parameter o specifying the propor-
tion of linked families), although care is required
because the resulting lod score has irregular statis-
tical properties (54). Alternatively, families can be
selected on the basis of a priori considerations. An
example of this approach is provided by the genetic
mapping of a gene for carly-onset breast cancer
(BRCAI) to chromosome 17q (55). Families were
added to the linkage analysis in order of their aver-
age age of onset, resulting in a lod score that rose
steadily to a peak of Z = 6.0 with the inclusion of
families with onset before age 47 and then fell with
the addition of later-onset pedigrees. Notwith-
standing these successes, many failed linkage stud-
ies may result from cryptic heterogeneity. It is al-
ways wise to try to redefine traits to make them
more homogeneous.

Linkage analysis can also be applied when pen-
etrance is unknown. One approach is to estimate
the ML value of the penetrance p within the linkage
analysis. A particular concern is to avoid incorrectly
overestimating p, because this can lead to spurious
evidence against linkage (caused by individuals who
inherit a trait-causing allele but are unaffected).
One can guard against this problem by performing
an affecteds-only analysis, in which one records un-
affected individuals as “phenotype unknown” or,
equivalently, sets the penetrance artificially low
(p = 0). This approach was important in studies of
both early-onset and late-onset Alzheimer’s disease
(25, 56). In the latter case, the lod score increased
from 2.20 with an age-adjusted penetrance func-
tion to 4.38 with an affecteds-only analysis.

Some traits are so murky that it is unclear who
should be considered affected. Psychiatric disorders
fall into this category, and investigators have ex-
plored using various alternative diagnostic schemes
within their analysis. For example, schizophrenia
might be defined strictly to include only patients
meeting the Diagnostic and Statistical Manual of
Mental Disorders (DSM) criteria or be defined more
loosely to include patients with so-called schizoid
personality disorders (57). This approach is permis-
sible in theory but requires great care in adjusting
the significance level to offset the effect of multiple
hypothesis testing.

Linkage analysis can also be extended to situa-
tions in which two or more genes play a role in the
inheritance of a disease, simply by examining the
inheritance pattern of pairs of regions. Such an ap-
proach has been dubbed simultaneous search (21,
58, 59). It can be applied to the situation of a ge-
netically heterogeneous trait or to an interaction
between two loci. Multiple sclerosis in large Finn-
ish kindreds has been reported to be linked to the
inheritance of both HLA on chromosome 6 and the
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gene for myelin basic protein on chromosome 18, Figure 2.
on the basis of such a two-locus analysis (60).
Limitations. Linkage analysis is subject to the
same limitations as any model-based method. It can
be very powerful, provided that one specifies the
correct model (61, 62). Use of the wrong model,
however, can lead one to miss true linkages and
sometimes to accept false linkages (63, 64). In par-
ticular, exclusion mapping of regions can only
demonstrate absence of a trait-causing locus fitting
the particular model tested (50, 52). Finally, testing
many models requires the use of a higher signifi-
cance level, which may decrease the power to detect
a gene; this issue is discussed in the section on sta-
tistical significance. The more complex the trait,

Allele-sharing methods
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Allele-sharing methods involve testing whether affected relatives inherit a region
identical-by-descent (IBD) more often than expected under random Mendelian segre-
gation. Affected sib pair analysis is a well-known special case, in which the presence
of a trait-causing gene is revealed by more than the expected 50% IBD allele shar-
ing. The method is more robust for genetic complications than linkage analysis but
can be less powerful than a correctly specified linkage model. Examples include ap-
plications to type | diabetes, essential hypertension, IgE levels, and bone density in

the harder it is in general to use linkage analysis
(65).

Computation. Calculating the likelihood ratio
can be horrendously complicated in some cases and
requires computer programs (66, 67). Elston and
Stewart invented the first practical algorithm for
calculating likelihoods (68, 69), which was imple-
mented by Ott in the first general-purpose linkage
program LIPED (70) and is also at the heart of the
widely used LINKAGE package (71). However,
the algorithm is not a complete panacea. In its orig-
inal form it does not easily accommodate environ-
mental or polygenic covariation among family
members, which form the basis of so-called “mixed
models” (67, 72) used widely in genetic epidemiol-
ogy (73). In addition, it can be extremely slow for
analysis with many genetic markers or inbred fam-
ilies. Alternative exact algorithms have been devel-
oped for some applications (74), including one that
allows multipoint homozygosity mapping (75), but
these tend to be limited to smaller pedigrees. Like-
lihoods can also be estimated by simulation-based
methods, such as the Gibb’s sampler and Monte
Carlo Markov chains (76). There remain many im-
portant computational challenges in linkage analy-
sis.

ALLELE=SHARING METHODS

Allele-sharing methods are not based on con-
structing a model, but rather on rejecting a model.
Specifically, one tries to prove that the inheritance
pattern of a chromosomal region is not consistent
with random Mendelian segregation by showing
that affected relatives inherit identical copies of the
region more often than expected by chance (Fig. 2).
Because allele-sharing methods are nonparametric
(that is, assume no model for the inheritance of the
trait), they tend to be more robust than linkage
analysis: affected relatives should show excess allele
sharing even in the presence of incomplete pen-
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postmenopausal women.

etrance, phenocopy, genetic heterogeneity, and
high-frequency disease alleles. The tradeoff is that
allele-sharing methods are often less powerful than
a correctly specified linkage model.

Allele-sharing methods involve studying affected
relatives in a pedigree to see how often a particular
copy of a chromosomal region is shared identical-
by-descent (IBD), that is, is inherited from a com-
mon ancestor within the pedigree. The frequency
of IBD sharing at a locus can then be compared
with random expectation. Formally, one can define
an identity-by-descent affected pedigree-member
(IBD-APM) statistic

Hs) = Do)
ij

where xg(s) is the number of copies shared IBD at
position s along a chromosome, and where the sum
is taken over all distinct pairs (4,)) of affected rela-
tives in a pedigree. The results from multiple fam-
ilies can be combined in a weighted sum 77s). As-
suming random segregation, 71(s) tends to a normal
distribution with a mean W and variance o that can
be calculated on the basis of the kinship coefficients
of the relatives compared (77, 78). Deviation from
random segregation is detected when the statistic
(T — w)/o exceeds a critical threshold (see the sec-
tion on statistical significance).

Sib pairs. Affected sib pair analysis is the simplest
form of this method. For example, two sibs can
show IBD sharing for zero, one, or two copies of
any locus (with a 25%-50%-25% distribution ex-
pected under random segregation). If both parents
are available, the data can be partitioned into sepa-
rate IBD sharing for the maternal and paternal
chromosome (zero or one copy, with a 50%-50%
distribution expected under random segregation).
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Figure 3.

Association studies
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Association studies test whether a particular allele occurs at higher frequency among
affected than unaffected individuals. Association studies thus involve population cor-
relation, rather than cosegregation within a family. Examples include HLA associations
in many autoimmune diseases, apolipoprotein E4 in Alzheimer’s, and angiotension
converting enzyme (ACE) in heart disease.
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In either case, excess allele sharing can be measured
with a simple x* test (79—81).

Sib pair studies have played an important role in
the study of type I diabetes. Excess allele sharing
confirmed the important role of HLA, although the
inheritance pattern fit neither a simple dominant or
recessive model (82, 83). With the availability of a
comprehensive human genetic linkage map, sib
pair analysis has been applied to a whole-genome
scan, and excess allele sharing has been found at a
locus on chromosome 11q, pointing to a previously
unidentified causal factor in type I diabetes (84). In
a similar search restricted to the X chromosome,
brothers concordant for the trait of homosexual ori-
entation showed significant excess allele sharing (33
out of 40 cases) in the region Xq28, suggesting the
involvement of a genetic factor influencing at least
the particular subtype of homosexuality studied
(85). The same approach can be applied to affected
uncle-nephew pairs and cousin pairs, for example.

IBD versus IBS. One often cannot tell whether
two relatives inherited a chromosomal region IBD,
but only whether they have the same alleles at ge-
netic markers in the region, that is, are identical by
state (IBS). It is usually safe to infer IBD from IBS
when a dense collection of highly polymorphic
markers has been examined, but the early stages of
genetic analysis may involve sparser maps with less
informative markers. Two approaches have been
developed to cope with this important practical dif-
ficulty. The first amounts to inferring IBD sharing
on the basis of the marker data (expected IBD-
APM methods) (86), whereas the second uses an-
other statistic based explicitly on IBS sharing (IBS-
APM method) (78, 87). (The inventors of the latter
method dubbed it simply the APM method, but we
prefer the more descriptive names used here.) Both
approaches are important, although key statistical
and computational issues remain open for each.

A number of recent studies have applied IBS-
APM methods to complex traits. The angio-

tensinogen gene has been shown with IBS-APM
analysis to be linked to essential hypertension in
multiplex families, although the gene explains only
aminority of the phenotype (88). Similarly, linkage
of late-onset Alzheimer’s disease to chromosome 19
could be established by IBS-APM, even though tra-
ditional lod score analysis gave more equivocal re-
sults (25).

Quantitative traits. Allele-sharing methods can
also be applied to quantitative traits. An approach
proposed by Haseman and Elston (89) is based on
the notion that the phenotypic similarity between
two relatives should be correlated with the number
of alleles shared at a trait-causing locus. Formally,
one performs regression analysis of the squared dif-
ference A? in a trait between two relatives and the
number x of alleles shared IBD at a locus. The
approach can be suitably generalized to other rela-
tives (90) and multivariate phenotypes (91). It has
been used, for example, to relate serum IgE levels
with allele sharing in the region of the gene encod-
ing interleukin-4 and bone density in postmeno-
pausal women with allele sharing in the region of
the vitamin D receptor (92, 93). In addition, there
has been a resurgence of interest in the theoretical
aspects of mapping genes with IBD and IBS meth-
ods (94).

APM methods have been applied to whole-ge-
nome searches only in a few cases, including a re-
cent study on manic depression (95). This situation
is certain to change in the near future.

ASSOCIATION STUDIES

Association studies do not concern familial in-
heritance patterns at all. Rather, they are case-con-
trol studies based on a comparison of unrelated af-
fected and unaffected individuals from a
population (Fig. 3). An allele A at a gene of interest
is said to be associated with the trait if it occurs at a
significantly higher frequency among affected com-
pared with control individuals. The statistical anal-
ysis is simple, involving only a 2X2 contingency
table. The biggest potential pitfall of association
studies is in the choice of a control group (which is
in sharp contrast to linkage and allele-sharing
methods, which require no control group because
they involve testing a specific model of random
Mendelian segregation within a family). Although
association studies can be performed for any ran-
dom DNA polymorphism, they are most meaning-
ful when applied to functionally significant varia-
tions in genes having a clear biological relation to
the trait.

Association studies have played a crucial role in
implicating the HLA complex in the etiology of
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autoimmune diseases. The allele HLA-B27, for ex-
ample, occurs in 90% of patients with ankylosing
spondylitis but only 9% of the general population
(96). There are scores of HLA associations involv-
ing such diseases as type I diabetes, rheumatoid
arthritis, multiple sclerosis, celiac disease, and sys-
temic lupus erythromatosus (97). More recently,
association studies played a key role in implicating
the apolipoprotein E gene in both late-onset Alz-
heimer’s disease and heart disease and the angioten-
sin converting enzyme (ACE) gene in myocardial
infarction (98). In addition, methods for assessing
associations between marker loci and quantitative
traits have received recent attention (99).

What does a positive association imply about a
disease? On its own, very little. Associations can
arise for three reasons, one of which is completely
artifactual.

1) Positive association can occur if allele A is ac-
tually a cause of the disease. In this case, the same
positive association would be expected to occur in
all populations (100).

2) Positive association can also occur if allele A
does not cause the trait but is in linkage disequilib-
rium with the actual cause, that is, A tends to occur
on those chromosomes that also carry a trait-caus-
ing mutation. Linkage disequilibrium will arise in a
population when two conditions are met: most
cases of the trait are due to relatively few distinct
ancestral mutations at a trait-causing locus, and the
marker allele A was present on one of these ancestral
chromosomes and lies close enough to the trait-
causing locus that the correlation has not yet been
eroded by recombination during the population’s
history. Linkage disequilibrium is most likely to
occur in a young, isolated population.

True associations due to linkage disequilibrium
can yield seemingly contradictory results. Because
linkage disequilibrium depends on a population’s
history, a trait might show positive association with
allele A, in one isolated population, with allele A,
in second isolated population, and with no allele in
a large, mixed population. Moreover, a trait may
show no association with an Eco Rl restriction frag-
ment length polymorphism (RFLP) in a gene but
strong association with a nearby Bam HI RFLP,
because of the particular population genetic fea-
tures of a population (101).

3) Most disturbingly, positive association can
also arise as an artifact of population admixture. In
a mixed population, any trait present at a higher
frequency in an ethnic group will show positive
association with any allele that also happens to be
more common in that group. To give alighthearted
example, suppose that a would-be geneticist set out
to study the “trait” of ability to eat with chopsticks
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in the San Francisco population by performing an
association study with the HLA complex. The allele
HLA-AI would turn out to be positively associated
with ability to use chopsticks—not because immu-
nological determinants play any role in manual
dexterity, but simply because the allele HLA-AI is
more common among Asians than Caucasians.

This problem has afflicted many association
studies performed in inhomogeneous populations
ranging from the population of metropolitan Los
Angeles to Native American tribes. A subtle exam-
ple arose because Pima Amerindians are much
more susceptible than Caucasians to type II diabe-
tes. Studies in the Pima showed association be-
tween type I diabetes and the G locus, with the
“protective” allele being the one present at higher
frequency in Caucasians. Subsequent work, how-
ever, revealed that the association was apparently
because tribe members have different degrees of
Caucasian ancestry: The presence of a “Caucasian”
allele at any gene tends to correlate with a higher
degree of Caucasian ancestry, which in turn tends
to correlate with a lower risk of type II diabetes (102).

To prevent spurious associations arising from ad-
mixture, a number of steps should be taken.

1) If possible, association studies should be per-
formed within relatively homogeneous popula-
tions. If an association can only be found in large,
mixed populations but not in homogeneous
groups, one should suspect admixture.

2) Given the difficulty of selecting a control
group that is perfectly matched for ethnic ancestry,
association studies should use an “internal control”
for allele frequencies: a study of affected individuals
and their parents. If the parents have genotypes A,/
A, and A;/A, and the affected individual has geno-
type A, /A5, then the genotype A /A, (consisting of
the two alleles that the affected individual did not
inherit) provides an “artificial control” that is well
matched for ethnic ancestry. This method is some-
times called the affected family-based control or
haplotype relative risk method and can be applied
either to the genotypes or to the alleles (103). In our
opinion, such internal controls should be routinely
used.

Collecting parental DNA is useful for a second,
unrelated reason. With knowledge of parental ge-
notypes, one can construct multimarker haplotypes
(indicating the alleles found on the same maternally
or paternally derived chromosome), which can be
much more informative than studying single markers
one at a time. This can be especially useful in isolated
populations, where only a limited number of distinct
trait-causing chromosomes may be present.

3) Once a tentative association has been found, it
should be subjected to a transmission disequilib-
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Figure 4.

Experimental crosses
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Experimental crosses can provide a large number of progeny while ensuring genetic

homogeneity. As a result, experimental crosses permit the genetic dissection of more
complex genetic interactions than directly possible in human families, such as map-

ping of QTLs. Examples include epilepsy in mice, hypertension in rats, type diabetes

in mice and rats, and susceptibility to intestinal cancer in mice.
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rium test (TDT) (104, 105). The test has the
premise that a parent heterozygous for an associated
allele Al and a nonassociated allele A, should more
often transmit A, than A, to an affected child. The
TDT was first applied to the puzzling situation of
the insulin gene, which showed strong association
but no linkage to type I diabetes; linkage had been
obscured because of the substantial proportion of
homozygous (and thus nonsegregating) parents
(104). It should be noted that TDT cannot be di-
rectly applied to the sample in which initial associ-
ation was found (because affected individuals nec-
essarily have an excess of the associated allele) but
rather to a new sample from the same population.

The controversy over a reported association be-
tween alcoholism and an allele at the dopamine D2
receptor (DRD?2) illustrates all the issues in associ-
ation studies. The initial study compared postmor-
tem samples from 35 alcoholics and 35 controls,
with no attempt to control for ethnic ancestry
(other than race) (106). For a Taq I RFLP located
about 10 kb downstream from DRD2, the A1 allele
was found to be present in 69% of alcoholics and
27% of controls. Attempts to replicate this finding,
however, have yielded conflicting results, with
some authors finding no association whatsoever
and others reporting association for severe alcohol-
ism only (107). Revealingly, the frequency of the
polymorphism has been shown to vary substantially
among populations and among the various “con-
trol” groups used. In light of this variation, it is
imperative that studies use internal control geno-
types, although this has not been done to date. As-
sociation studies in relatively homogeneous popu-
lations, linkage studies, and transmission tests have
all been negative (108). At present, there is no com-
pelling evidence that the reported association is not
an artifact of admixture.

Association studies are not well suited to whole-
genome searches in large, mixed populations. Be-
cause linkage disequilibrium extends over very
short distances in an old population (109), one
would need tens of thousands of genetic markers to

“cover” the genome. Moreover, testing many mark-
ers raises a serious problem of multiple hypothesis
testing: each association test is nearly independent.
Testing 7 loci each with # alleles amounts to per-
forming about #(k — 1) independent tests, and the
required significance level should be divided by this
factor. A nominal significance level of P~ 0.0001
is thus needed simply to achieve an overall false
positive rate of 5%, if one tests 100 markers with
six alleles each. (Some authors propose to avoid this
problem by identifying all results significant at the
P = 0.05 level in an initial sample and then at-
tempting to replicate them in a second sample
(110). However, the same multiple testing issue
still applies to retesting many results at the second
stage.) Genomic search for association may be more
favorable in young, genetically isolated populations
because linkage disequilibrium extends over greater
distances, and the number of disease-causing alleles
is likely to be fewer (21, 111).

In summary, linkage-type studies and association
studies have many crucial differences. Association
studies test whether a disease and an allele show
correlated occurrence in a population, whereas
linkage studies test whether they show correlated
transmission within a pedigree. Association studies
focus on population frequencies, whereas linkage
studies focus on concordant inheritance. One may
be able to detect linkage without association (for
example, when there are many independent trait-
causing chromosomes in a population, so that asso-
ciation with any particular allele is weak) or associ-
ation without linkage (for example, when an allele
explains only a minor proportion of the variance for
a trait, so that the allele may occur more often in
affected individuals but does a poor job of predict-
ing disease status within a pedigree). Linkage and
association are often used interchangeably in pop-
ular articles about genetics, buct this practice should
always be avoided.

EXPERIMENTAL CROSSES: MAPPING
POLYGENIC TRAITS, INCLUDING QTLs

Experimental crosses of mice and rats offer an
ideal setting for genetic dissection of mammalian
physiology (Fig. 4). With the opportunity to study
hundreds of meioses from a single set of parents, the
problem of genetic heterogeneity disappears, and
far more complex genetic interactions can be
probed than is possible for human families. Animal
studies are thus an extremely powerful tool for ex-
tending the reach of genetic analysis. Of course,
animal studies must always be evaluated for their
applicability to the study of human diseases. Be-
cause disease-causing mutations may occur at many

FOCUS T1HE JOURNAL OF LIFELONG LEARNING IN PSYCHIATRY




steps in a pathway, animal models may not point to
those genes most frequently mutated in human dis-
ease. However, animal studies should identify key
genes acting in the same biochemical pathway or
physiological system. Animal models that are poor
models for pharmacologists seeking to evaluate a
new human drug therapy may nonetheless be excel-
lent models for geneticists seeking to elucidate the
possible molecular mechanisms or pathways af-
fected in a disease.

The power of experimental crosses is most dra-
matically seen in the ability to dissect quantitative
traits into discrete genetic factors (112). Systematic
quantitative trait locus (QTL) mapping has only
recently become possible with the construction of
dense genetic linkage maps for mouse and rat (18,
113, 114) and the development of a suitable ana-
lytical approach for a whole-genome search, known
as interval mapping. Interval mapping uses pheno-
typic and genetic marker information to estimate
the probable genotype and the most likely QTL
effect at every point in the genome, by means of a
maximum-likelihood linkage analysis. The basic
method was introduced by Lander and Botstein for
asimple situation (47) but has been generalized to a
wide variety of settings (59, 115, 116). In general,
QTL mapping is much more powerful in experi-
mental crosses than in human families because of
the fundamental differences in the statistical com-
parisons involved (117) and because nongenetic
noise can be decreased through the use of progeny
tests, recombinant inbred strains, and recombinant
congenic strains (47, 118).

Genome-wide QTL analysis was first applied to
fruit characteristics in the tomato (119), but it was
soon used in mammals to study epilepsy in mice
and hypertension in rats (113, 120). In the latter
case, the animal study rapidly stimulated parallel
human studies, with the reported linkage of the
ACE gene to hypertension in rats provoking inves-
tigation of various genes in the pathway and leading
to the implication of angiotensinogen in essential
hypertension in humans. In only a short time, there
has been an explosion of interest in QTL mapping
in both agriculture and biomedicine (121). The
approach opens the way to understanding the ge-
netic basis for the tremendous strain variations seen
in such quantitative traits as cancer susceptibility,
drug sensitivity, resistance to infection, and aggres-
sive behavior (122). The most important applica-
tion of QTL mapping may turn out to be the iden-
tification of modifier genes affecting single-gene
traits. Yeast geneticists routinely use suppressor
analysis to study a mutant gene by isolating second-
ary mutations capable of modifying the original
mutant phenotype. Although mammalian geneti-
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cists cannot easily use mutagenesis to find suppres-
sors, they may be able to accomplish the same goal
by breeding mutations onto different genetic back-
grounds and dissecting the QTLs that affect the
phenotypic expression. A first such example is the
finding that intestinal neoplasias induced by muta-
tions in the mouse Apc gene can be dramatically
influenced by a modifier locus on chromosome 4
(18). By applying this approach to the ever-growing
list of gene knockouts, it should be possible to iden-
tify many additional interacting genes.

Experimental crosses also facilitate analysis of
discrete traits with complex genetic etiology. Stud-
ies of type I diabetes in the nonobese diabetic
mouse report the mapping of a dozen loci, each
making a partial contribution to a threshold trait
(123). Analysis of type I diabetes in the BB rat
points to a purely synthetic interaction with one,
two, or three genes required to produce disease,
depending on the particular cross (124).

After initial mapping, experimental geneticists
can study the physiological effects of individual
polygenic factors by constructing congenic strains
that differ only in the region of a single locus. Genes
may also be mapped more finely by systematically
whittling away at the size of the congenic inter-
val. In some cases, synteny conservation in gene
order between different mammals may point to in-
teresting regions to investigate in the human ge-
nome.

An important point about the use of experimen-
tal crosses deserves to be emphasized, because it is
commonly misunderstood. Genetic mapping re-
sults need not be consistent among different
crosses. Linkage analysis reveals only those trait-
causing genes that differ between the two parental
strains used. A QTL may thus be detected in an
A X B cross, but not in an A X C cross. Moreover,
the effect of a QTL allele may change—or even
disappear—when bred onto a different genetic
background, because of epistatic effects of other
genes.

STATISTICAL SIGNIFICANCE

One of the thorniest problems in the genetic
analysis of complex traits is to know whether a re-
sult is statistically significant. Psychiatric genetics
has confronted this issue most squarely, as reported
linkages to manic depression or schizophrenia have
typically failed to withstand close scrutiny or repli-
cation (57, 125). Statistical significance is a chal-
lenging problem because genetic analysis can in-
volve two types of fishing expeditions: testing many
chromosomal regions across a genome and testing
multiple models for inheritance.
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For example, human geneticists have long used
the convention that a lod score exceeding 3 should
be required to declare linkage to a simple Mende-
lian trait. The threshold was based on a Bayesian
argument involving the prior probability of finding
agene and aimed to yield a false positive rate of 5%.
Unfortunately, the reasoning does not extend well
to the modern world of complex traits (with no
clear prior hypothesis) or dense maps (with thou-
sands of markers that can be tested). Instead, two
approaches have gained favor in recent years.

Analytical methods. Formally speaking, genetic
dissection involves calculating a statistic X through-
out a genome. The issue of statistical significance
consists of choosing an appropriate threshold 7 for
declaring the presence of a gene, such that the ge-
nome-wide false positive rate, Prob (X > 7), is
small, under the null hypothesis that no gene is
present. In some cases, the genome-wide false pos-
itive rate can be estimated on the basis of simple and
elegant mathematical formulas. The unifying idea
comes from the insight (47, 126) that many linkage
statistics tend to an asymptotic null distribution
that is closely related to a well-known physical pro-
cess called the Ornstein-Uhlenbeck diffusion
(which describes the velocity of a particle undergo-
ing one-dimensional Brownian motion). The prob-
lem of random large excursions of such diffusions
has been extensively studied and applies directly to
genetic analysis. The genome-wide false positive
rate, oo;* = Prob (X > T somewhere in the ge-
nome), can be related to the nominal false positive
rate, oo = Prob (X > T at a single point), by the
formula

a = [C + 2pGhH(T)]o;

where C is the number of chromosomes, G is ge-
netic length of the genome in Morgans, and the
constant p and the function /4(7) are defined in the
notes (127). Solving a;* = 0.05 yields the appro-
priate threshold 7. As confirmed by simulation
studies, the estimates apply well to many basic sit-
uations (47, 128). Appropriate thresholds for vari-
ous settings are shown in Table 1. For traditional
human linkage analysis, the appropriate asymptotic
lod score threshold for a 5% significance level is
about 3.3. The traditional threshold of 3 actually
yields a genome-wide false positive rate of about
9%. Note that all of the thresholds correspond to
nominal p values less than 10~ %; this is consider-
ably more stringent than the level of 10~ applied
by many authors.

The problem of searching over alternative mod-
els has received formal attention in only a few cases
(61). Current practice is to consider that each of the

k models examined are statistically independent.
The traditional Bonferroni correction prescribes
multiplying the significance level by £ or, equiva-
lently, increasing the required lod score threshold
by aboutlog, ,(#) (129). The approach will likely be
too conservative if the models are dependent.

Simulation studies. Unfortunately, the analyti-
cal approach depends on key assumptions (such as
the normality of an underlying statistic and the
pooling of many independent meioses) which will
often be false in important situations, for example,
affected-pedigree-member (APM) analysis of a
modest number of large pedigrees. The best ap-
proach in such cases is to directly estimate the false
positive rate by simulation. In most settings, one
can randomly generate the inheritance pattern of
genetic markers in a pedigree according to the laws
of Mendelian inheritance and then recalculate the
value of the statistic X for each such replicate (61,
130). In some settings, one can apply permutation
tests such as scrambling the phenotypes or geno-
types in a sib pair or QTL analysis (131). Simula-
tion-based tests have received a great deal of atten-
tion in statistics in general (132) and are very
appropriate for many genetic analyses settings (61,
130, 131). They have been applied to the problem
of genome-wide search and model selection (61).
We strongly advocate this approach, although
broad use will require increased dissemination of
computer programs for simulation analysis.

A final issue should be noted. The appropriate
thresholds for whole-genome searches should al-
ways be applied to any new hypothesis, even if one
only searches over a small subset of the genome.
The reason is that traits of interest will typically be
studied by multiple investigators, but only positive
results will be published. The genetics community
as awhole is thus conducting a whole-genome scan,
and the full muldple testing threshold should be
applied to any positive result. Some authors have
suggested avoiding this problem by developing hy-
potheses in one data set and retesting them in an-
other (133). This can be helpful, but one must still
apply a correction if one expects to retest multiple
hypotheses at the second stage.

EXPERIMENTAL DESIGN

In designing a genetic dissection, two crucial
choices arise: (i) the number and type of families
from which to collect data and (ii) the number and
type of genetic markers to use. To make these
choices, one needs to know the statistical power to
detect a gene as a function of these choices.

For a simple Mendelian monogenic trait, a basic
rule of thumb suffices: With a genetic map contain-
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Table 1.
lod

Application Test score Normal score p value
Human

Standard linkage analysis, one free parameter One-sided 3.3 3.9 (4] 5x107°
Allele sharing: Grandparent-grandchild pairs One-sided 3.3 3.9 (4] 5x10°°
Allele sharing: Half-sib or sib pairs (parents typed) One-sided 3.6 4.1 (4] 3x10°°
Allele sharing: Sib pairs (parents untyped) Possible 4.0 4.3V x22df) 2x107°

triangle

Allele sharing: Uncle-nephew or first-cousin pairs One-sided 3.7 4.1 () 2x10°°
Mouse

Backcross or intercross: 1 degree of freedom Two-sided 3.3 3.9 (V4] 1x1074
Intercross: 2 degrees of freedom Two-sided 4.3 4.4V x22df) 5x10°
Recombinant inbred lines: 1 degree of freedom Two-sided 3.9 4.3 (4] 2x107°

Asymptotic thresholds corresponding to a genome-wide significance level of 5%. The human applications pertain to linkage analysis in a pedigree without many
missing individuals and to the most common types of affected-relative pair analysis. For sib pairs, two cases are considered: (i) parents available for typing, with
allele sharing on maternal and paternal chromosomes counted separately, and (i) parents unavailable for typing, in which case sibs share zero, one, or two copies
and the possible triangle method is applied [see (81)]. The mouse applications pertain to situations such as QTL mapping, in which either a single parameter is
estimated (for example, an additive effect) or two parameters are estimated (for example, independent additive and dominant effects). Two-sided tests are used to
allow for either parental strain to contribute alleles that increase the trait. Asymptotic thresholds correspond to the situation of a dense genetic map applied to a
large number of meioses. Equivalent thresholds are given in terms of lod scores; normal scores used in allele-sharing methods and QTL mapping [that is, standard
random normal variables (2) or, more generally, square-roots of x? variables (V/x?)], and nominal p values for a single point. The appropriate asymptotic threshold
is derived by setting [C + 2pG h(T)Ja; = 0.05; see (127) for details. The assumed genome size is 3300 cM for the human and 1600 cM for the mouse. The
slightly larger genetic length of 4000 cM for the human increases the required lod and normal-variable thresholds by about 0.1 units and decreases the p values

by about 25%.

ing highly polymorphic markers every 20 centi-
morgans, linkage can be easily detected with about
40 informative meioses (21, 134). More generally,
the power to detect linkage depends essentially on
the number of informative meioses, almost regard-
less of family structure. Power can be approximated
simply by counting informative meioses and can be
more precisely estimated with simulation-based
computer packages such as SIMLINK and SLINK
(135).

In contrast, there is no comparable prescription
for a complex trait. The optimal experimental de-
sign depends on the precise details of the genetic
complexities, information which is typically not
known in advance. The best compromise is to de-
sign a study to have sufficient power to detect any
genes with effects exceeding a given magnitude. For
example, one can calculate the number of sib pairs
required to use allele-sharing methods to detect a
locus that increases the relative risk to siblings by at
least twofold (32, 82, 136). However, even if the
overall relative risk to siblings is large, there is no
guarantee that there exists any individual locus hav-
ing an effect of this magnitude. Similarly, one can
calculate the number of progeny needed to detect a
QTL accounting for 10% of the phenotypic vari-
ance of a trait, but predicting whether any such loci
will be present is possible only under very favorable
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circumstances (137). Genetic analyses of complex
traits should always explicitly report the minimum
effect that could have been reliably detected given
the subjects studied.

The optimal choice of which families or crosses
to study may also vary with the circumstances. For
human studies, the range of choices include
whether to focus on individuals with extreme phe-
notypes, when to extend a pedigree, and whether to
prefer or to exclude families with too many affected
individuals (137). For animal studies, the issues in-
clude whether to set up a backcross or intercross
and whether to concentrate on the progeny with
the most extreme phenotypes (47, 138).

The optimal density of genetic markers is a topic
requiring more attention. The effect of polymor-
phism rate on the power of allele-sharing methods
has been studied for single markers (33, 95, 136,
139), but not for the more realistic situation of
multipoint mapping. It is clear that denser maps are
needed for the study of sib pairs without available
parents or for the study of more distant relatives,
but quantitative guidance is lacking. The effect of
marker density on experimental crosses has been
more extensively studied (47, 140). Finally, a few
authors have begun to explore two-tiered strategies,
in which initial evidence is obtained with a sparse
map and then confirmed with a dense map (141).
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CLONING GENES THAT UNDERLIE
COMPLEX TRAITS

Once genetic dissection implicates a chromo-
somal region, there remains the formidable task of
identifying the responsible gene. That type I diabe-
tes cosegregates with anonymous markers on chro-
mosome 11q in the human or that hypertension
cosegregates with the ACE gene in rat crosses sim-
ply indicates that a causative gene lies somewhere
nearby. However, the possible region might be as
large as 10 to 20 Mb—enough to contain 500
genes. Positional cloning requires higher resolution
mapping to narrow the search to a tractable region.

For a simple Mendelian trait, the situation is
most favorable. Because the responsible gene must
show perfect cosegregation with the trait, even a
single crossover suffices to eliminate a region from
consideration. From a study of 200 meioses, the
interval can be pared to about 1 ¢M, corresponding
to about 1 Mb (142). Still, the challenge is consid-
erable. It is sobering to note that virtually all suc-
cessful positional cloning efforts have depended on
the fortuitous presence of chromosomal abberra-
tions, trinucleotide repeat expansions, or previously
known candidate genes. Only two human disease
genes have been positionally cloned solely on the
basis of point mutations: cystic fibrosis and diastro-
phic dysplasia (DTD) (143).

For complex traits, positional cloning will likely
be even harder. Because cosegregation is not ex-
pected to be perfect, single crossovers no longer
suffice for fine-structure mapping. Resolution be-
comes a statistical matter (144). For a gene confer-
ring a relative risk of twofold, for example, one
would need to examine a median number of nearly
600 sib pairs to narrow the likely region (95% con-
fidence interval) to 1 cM. Moreover, the genes un-
derlying complex traits may be subtle missense mu-
tations rather than gross deletions. How will
positional cloners overcome these obstacles?

In the human, the most powerful strategy may
prove to be linkage disequilibrium mapping in ge-
netically isolated populations (21, 145). The idea is
to find many affected individuals who have inher-
ited the same disease-causing allele from a common
ancestor. Such individuals will tend to have re-
tained the particular pattern of alleles present on
the ancestral chromosome, with the immediate vi-
cinity of the gene being evident as the region of
maximal retention. In effect, the method exploits
information from many historical meioses and
thereby affords much higher recombinational reso-
lution. Fine-structure linkage disequilibrium map-
ping has been applied to the isolated Finnish pop-
ulation (founded about 100 generations ago) to

permit the cloning of the DTD gene (143).
Whereas conventional recombinational mapping
was only able to localize the gene to within about
1.5 cM, linkage disequilibrium studies were able to
pinpoint it to within about 50 kb. The approach is
also applicable to younger populations: linkage dis-
equilibrium should be detectable over larger dis-
tances, although the ultimate resolving power will
be less (146). Elegant studies in the Mennonite
population (founded about 10 generations ago)
have allowed initial mapping of genes involved in a
recessive form of Hirschsprung disease (20).

In animal models, fine-structure mapping of fac-
tors such as QTLs can be accomplished through
appropriate breeding. The key is to ensure unam-
biguous genotyping at the trait-causing locus. The
best solution is probably to (i) create congenic
strains differing only in the region of interest, (ii)
cross these strains to construct recombinant chro-
mosomes (that is, ones in which there has been a
crossover between flanking genetic markers), and
(iii) evaluate each recombinant chromosome to de-
termine which trait-causing allele is carried by per-
forming progeny testing (that is, examining the
phenotype of many progeny carrying the chromo-
some) (113). The construction of the required con-
genic strains would traditionally require 20 gener-
ations of breeding. With the advent of complete
genetic linkage maps, however, one can construct
“speed congenics” in only three to four generations
by using marker-directed breeding (147).

The Human Genome Project promises to make a
tremendous contribution to the positional cloning
of complex traits by eventually providing a com-
plete catalog of all genes in a relevant region. With
such information, positional cloning will be re-
duced to the systematic evaluation of candidate
genes—still challenging, but far more manageable
than today’s more haphazard forays. Indeed, the
Human Genome Project is essential if the genetic
analysis of complex traits is to achieve its full poten-
tial.

Finally, candidate genes, whether identified by
positional cloning or guessed a priori, must always
be subjected to rigorous evaluation before they are
accepted. The gold-standard tests for human genes
should include association studies demonstrating a
clear correlation between functionally relevant al-
lelic variations and the risk of disease in humans,
and transgenic studies demonstrating that gene ad-
dition or gene knockout in animals produces a phe-
notypic effect. For genes identified from experi-
mental animal crosses, one can and should go a step
further by demonstrating that an induced knock-
out allele at the candidate gene fails to complement
an allele at the locus to be cloned (148).
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CONCLUSION

In the early 1900s, the fledgling theory of Men-
delian genetics was attacked on the grounds that the
simple, discrete inheritance patterns of pea shape or
Drosophila eye color did not apply to the variation
typically seen in nature (149). After 20 years of
acrimonious battle, the issue was eventually re-
solved with the theoretical understanding that
Mendelian factors could give rise to complex and
continuous traits, even if direct identification of the
genes themselves was not practical. Now, with the
advent of dense genetic linkage maps, geneticists
are taking up the challenge of the genetic dissection
of complex traits. If they are successful, the tools of
genetics will be brought to bear on some of the most
important problems in human health and in agri-
culture, and the Mendelian revolution will finally
be complete.
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ments should target an allele A, that causes a dominant (or partially
dominant) phenotype when placed in trans to a second allele Ay; the
knockout allele would then be expected to fail to yield the dominant
phenotype in the complementation test. Because current gene knockout
protocols are limited to a few mouse strains such as 129, one may first
need to construct a congenic carrying the desired allele in such a strain
before one can construct the appropriate knockout.
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