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Susceptibility Genes:
Emergence of Positional Candidates and
Future Directions
Schizophrenia is a devastating psychiatric disorder that affects �1% of the population worldwide. It is characterized by

so-called ‘positive symptoms’–including delusions and hallucinations–‘negative symptoms’–including blunted emotions

and social isolation–and cognitive deficits–including impairments in attention and working memory. Studies of the

inheritance of schizophrenia have revealed that it is a multifactorial disease that is characterized by multiple genetic sus-

ceptibility elements, each contributing a modest degree of risk. Linkage studies have identified several potential schizo-

phrenia susceptibility loci, and in recent years major progress has been made in the identification of positional candi-

date susceptibility genes from these loci. A central goal of future research will be to use this genetic knowledge to

generate specific animal models, characterize genetic interactions, investigate the disease pathophysiology and assist

drug-discovery efforts.

(Reprinted with permission from Trends in Pharmacological Sciences Vol.27 No.4 April 2006; 27(4):226–233)

THE GENETIC COMPONENT OF
SCHIZOPHRENIA

Schizophrenia is a severe psychiatric disorder that
has a lifetime prevalence of �1% in most of the
populations studied (1). Similar to many common
complex disorders, schizophrenia is a multifactorial
disorder that is characterized by the contribution of
multiple susceptibility genes that could act in con-
junction with epigenetic processes and environ-
mental factors (1). More than 20 genome-wide
scans aiming to localize genes for this disorder have
been reported. Two recent meta-analyses (2, 3) of
the combined results of several genome-wide stud-
ies were performed to attempt to clarify inconsis-
tencies among individual studies (meta-analytic ap-
proaches tend to amplify signals that are weak but
consistent among studies and to attenuate signals
that are strong but non-reproducible). One meta-
analysis study confirmed 8p, 13q and 22q as valid
linkage regions that probably contain one or more
susceptibility genes. The second meta-analysis
study (using a different statistical methodology)
implicated 2p12–q22.1 (under stringent criteria),
in addition to loci at 5q, 3p, 11q, 2q, 1q, 22q, 8p,
6p, 20p and 14q (under less-stringent thresholds).
One interpretation of these findings is that approx-

imately ten regions of the genome are likely to con-
tain schizophrenia susceptibility genes, although
this is almost certainly an underestimate because:
(i) meta-analytic approaches tend to attenuate true
strong signals that are population specific; and (ii) it
is expected that many schizophrenia susceptibility
genes are undetectable using linkage studies. The
ultimate validation of the linkage results will be the
identification of the susceptibility genes them-
selves. Indeed, in the past three years, the field of
schizophrenia genetics has moved to the systematic
positional cloning of susceptibility genes from
chromosomal regions that were first identified by
linkage approaches. These systematic efforts em-
ploy the genotyping of relatively large numbers of
markers, including single nucleotide polymor-
phisms (SNPs) and linkage disequilibrium (LD) as-
says in family-based or case–control samples, and
have resulted in the identification of strong posi-
tional candidate genes.

In this article, we discuss the genetic data re-
garding these strong positional candidate genes
that were identified through the systematic fol-
low-up of linkage signals (in chronological order
of publication of the reports), in addition to their
possible biological functions. We also discuss the
genetic data for three candidate genes that are
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located in the vicinity of linkage signals and are
identified through multipronged candidate gene
approaches, rather than systematic positional
cloning approaches. Finally, we briefly comment
on the statistical support for these findings and
the future directions of genetic research in the
context of advancing the understanding of how
genetic factors contribute biologically to the dis-
ease process.

Owing to space limitations, other genes that
could be good candidates (e.g. DRD3, CHRNA2,
BDNF, GAD2 and AKT1) but do not conform to
the criteria outlined in the previous paragraph
are not discussed in this article. Furthermore, we
cite a limited number of follow-up genetic stud-
ies for each genetic finding, prioritizing the ones
that use relatively large family-based samples.
Such samples are considered more reliable than
case–control samples in which factors such as hidden
population stratification can confound the interpreta-
tion of a positive or negative finding (4).

GENES IDENTIFIED THROUGH THE
SYSTEMATIC FOLLOW-UP OF LINKAGE
SIGNALS

The first report of a strong positional candidate
schizophrenia gene that was identified by a system-

atic fine-mapping approach within a region impli-
cated by linkage analysis was published in 2002 (5).
Soon thereafter, three additional reports described
three new susceptibility genes that were identified
using similar approaches (6–8). More recently, ad-
ditional genes have been reported based on the sys-
tematic SNP-based follow-up analysis of linkage
peaks (9–14) (Table 1).

PROLINE DEHYDROGENASE

The proline dehydrogenase (PRODH) gene is lo-
cated on chromosome 22q11, which is a region
implicated by some linkage studies (2, 3) and also
frequently deleted in patients with schizophrenia
(15). Several studies have established that the risk of
schizophrenia for a patient with a 22q11 microde-
letion is �25–31 times the general population risk
of 1% (16, 17) and that the rate of 22q11 microde-
letions in schizophrenia, although relatively low, is
�12–80 times the estimated general population
rate (15). This first unequivocal association be-
tween a well-defined genetic lesion and schizophre-
nia facilitated fine-mapping efforts at this locus. LD
analysis in family samples (triads) that tested for
preferential transmission of 72 SNPs and multi-
SNP haplotypes from parents to affected (non-de-
leted) individuals identified the over-transmission

Table 1. Schizophrenia positional candidate genes: chromosomal location and
potential function
Gene symbol Locus Function Refs

PRODH 22q11 Metabolism of L-proline; potential indirect influence on glutamate-mediated transmission (5, 26)

DTNBP1 6p22 Member of dystrophin protein complex and biogenesis of lysosome-related organelle
complex; potential presynaptic effects on glutamate release at excitatory synapses

(6, 37)

NRG1 8p12 Broad involvement in neuronal development, survival and synaptic function (7, 44)

G72 13q34 Potential modulation of DAAO; indirect effects on glutamate-mediated signaling (8, 54)

DISC1 1q42.1 Multifunctional; possible involvement in cytoskeletal and centromere function and in cell
membrane receptor localization and signal transduction

(9, 61)

CAPON 1q22 Potential regulator of neuronal nitric oxide synthase association with PSD-95;
implications for NMDA-receptor-coupled nitric oxide signaling

(10, 66)

ZDHHC8 22q11 Palmitoylation of PSD-95 and other substrates, potential implications for synaptic
architecture and plasticity

(11, 69)

TAAR6 6q23 G-protein-coupled receptor for trace amines; potential role in neurotransmission (12, 74)

EPN4 5q33 Clathrin-mediated pit formation and endocytosis; potential role in reuptake and storage
of neurotransmitters

(13, 75)

GAB(A) receptors 5q34 GABA-mediated transmission (14, 77, 78)

COMT 22q11 Metabolism of dopamine; regulation of extracellular dopamine levels in prefrontal cortex (26, 79, 86)

RGS4 1q23 GTPase activator that modulates signal transduction through dopamine, metabotropic
glutamate and muscarinic receptors

(91, 95, 96)

PPP3CC 8p21 g Catalytic subunit of protein phosphatase calcineurin; subunit-specific function unknown;
calcineurin is involved in synaptic plasticity and D1 receptor signaling

(97, 98)
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of a gene variant located at the 30 end of the
PRODH gene (5, 18). This finding was recently
replicated in two independent family-based sam-
ples, including a large collection of 528 families
from China (19) and 274 families of Ashkenazi
Jewish origin (20), although one negative family
study has also been reported (21). Moreover, 30-
end variants of the gene were also identified as being
a risk factor for the development of psychotic symp-
toms during adolescence in children with 22q11
microdeletions (22). Although the implicated vari-
ants are consistently located at the 3� end of the
gene, their functional consequences are still un-
known. However, rare variants of the PRODH gene
affecting highly conserved amino acids (generated
through gene conversion from a nearby pseudo-
gene) that are enriched to various degrees in sam-
ples of individuals with schizophrenia have been
identified (5). This discovery gained additional
support in an independent set of studies (23, 24),
and functional analysis has linked several of these
variants with marked reductions in enzymatic ac-
tivity (25). PRODH encodes an enzyme that me-
tabolizes L-proline—a putative neuromodulatory
amino acid that could directly influence glutamate-
mediated transmission, which is believed to have a
crucial role in the pathophysiology of schizophre-
nia (26). In addition, Prodh-deficient mice show
dysregulation of cortical dopamine turnover and
transmission that is reminiscent of schizophrenia in
humans (26).

DYSTROBREVIN-BINDING PROTEIN 1
The dystrobrevin-binding protein 1, or dys-

bindin, (DTNBP1) gene maps within a broad re-
gion on chromosome 6p where there is evidence of
linkage to schizophrenia in Irish families (27). Ge-
netic variants of this gene are associated with
schizophrenia (6) in the same families. This finding
has been replicated in several additional samples,
including some family-based samples, but negative
studies have also been reported and considerable
putative allelic heterogeneity was evident among
the positive studies (28–32). Initial expression and
functional studies provide some additional support
for a role for DTNBP1 in schizophrenia. DTNBP1
is a member of the biogenesis of lysosome-related
organelles complex (33) and the dystrophin protein
complex (34). It has a widespread distribution in
the brain, including expression in pyramidal neu-
rons in the hippocampus and the dorsolateral pre-
frontal cortex (DLPFC). Two recent studies pro-
vide evidence that DTNBP1 expression is decreased
in schizophrenia in both the DLPFC and the exci-
tatory pathways of the hippocampus (35, 36). A

substantial fraction of DTNBP1 is presynaptically
localized, and preliminary in vitro evidence suggests
that knockdown of endogenous dysbindin protein
results in the reduction of presynaptic protein ex-
pression and glutamate release, indicating that dys-
bindin might influence exocytotic glutamate re-
lease (37).

NEUREGULIN 1
Neuregulin 1 (NRG1) was identified as being a

susceptibility gene for schizophrenia following a ge-
nome-wide linkage scan of 33 Icelandic families
with schizophrenia that highlighted a locus on
chromosome 8p (7). Fine-mapping of the 8p locus,
together with haplotype association analysis of a
large number of patients with schizophrenia and
control individuals, narrowed the region of interest
to the 5� end of the NRG1 gene. A core haplotype at
the 50 end of the gene comprising several markers
within a 290-kb LD block showed highly signifi-
cant association with schizophrenia (7). The func-
tional consequences of this gene variant are still
unknown. NRG1 association with schizophrenia
has been observed in several additional samples,
including some reliable family-based samples, al-
though considerable allelic heterogeneity was evi-
dent in these studies (38–41). Negative studies
have also been reported (20, 42, 43). The NRG1 gene
encodes a well-characterized protein that is involved
in many neuronal functions, ranging from neuronal
survival to myelination and synaptic plasticity (44).

G72
The G72 gene is located within a broad linkage

peak that extends from 13q32 to q34, where there
is evidence of linkage to both schizophrenia and
bipolar disorder (2, 45). Significant association
with schizophrenia was observed for several SNPs
and haplotypes at the G72 locus in a French–Ca-
nadian case–control sample, and the association for
two SNPs was replicated in a Russian case–control
cohort (8). Interestingly, a subsequent study pro-
vided evidence of an association between variants at
the G72 locus and bipolar disorder (46). The asso-
ciation of G72 with schizophrenia has been ob-
served in several additional samples with evidence
of allelic heterogeneity, although negative studies
have also been reported (47–53). Expression and
functional studies indicate a potential interaction
between G72 and D-amino acid oxidase (DAAO)
that modulates the DAAO enzymatic activity and,
thus, could indirectly affect glutamate-mediated
signaling (8, 54). However, this interaction re-
mains to be demonstrated in vivo.
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DISRUPTED IN SCHIZOPHRENIA 1

A balanced translocation involving chromo-
somes 1 and 11 (1q42.1;11q14.3) was strongly
linked to psychopathology, including schizophre-
nia, depression and mania in a large Scottish family.
The 1q breakpoint was cloned and was found to
involve two genes: disrupted in schizophrenia
(DISC)1 and DISC2 (the latter is a noncoding, pre-
sumably regulatory, RNA) (55). Although DISC1
was identified five years ago, it was a more recent
large-scale linkage (56) and follow-up systematic
LD analysis in families from Finland that identified
DISC1 as being a positional candidate from the
1q42 locus (9). DISC1 association with schizophre-
nia has been observed in several additional samples
with evidence of allelic heterogeneity, although
negative studies have also been reported (20, 57,
58). Interestingly, a family afflicted with schizo-
phrenia and schizoaffective disorder was recently
shown to have segregated a rare frameshift variant
of the gene (59). DISC1 is a complex gene, the
involvement of which in development and synaptic
plasticity is poorly understood. The protein it en-
codes is associated with numerous cytoskeletal pro-
teins and could be involved in centrosomal and
microtubule function, cell migration, neurite out-
growth, membrane trafficking of receptors, mito-
chondrial function and, possibly, phosphodiester-
ase function (60, 61).

C-TERMINAL PDZ LIGAND OF NEURONAL NITRIC
OXIDE SYNTHASE

LD analysis, using 14 microsatellite markers and
15 SNPs from a subregion of a previously reported
linkage locus at 1q22 (62), in large Canadian fam-
ilies with schizophrenia produced nominally signif-
icant evidence of LD between schizophrenia and a
subset of markers that is located within the genomic
extent of the C-terminal PDZ ligand of neuronal
nitric oxide synthase (CAPON) gene, making CA-
PON a prime positional candidate from the schizo-
phrenia susceptibility locus on 1q22 (10). An ab-
normal expression pattern of this gene was observed
in the brains of individuals with schizophrenia or
bipolar disorder (63). Two replication studies, one
positive and one negative, have been reported (64,
65). CAPON is involved in NMDA-receptor-cou-
pled nitric oxide signaling (66).

ZDHHC8
The involvement of this gene in schizophrenia

was identified in the same LD screen of the 22q11
locus that led to the discovery of the PRODH–

schizophrenia association (5, 18). More recently, it
was shown that one of the ZDHHC8 risk alleles (at
SNP rs175174), located in intron 4, affects the ra-
tio of an intron-4-containing unspliced form (en-
coding a putative truncated inactive form of the
protein) to the fully spliced active form (11). The
relatively subtle consequent change in the level of
the active protein led to �1.5-fold increase in dis-
ease risk in two tested family samples (11). Other
variants of the gene (affecting distinct aspects of its
complex splicing or its expression level) could mod-
ulate the disease risk in other samples. One positive
family-based study and one negative family-based
study have been reported (67, 68). The effect of the
gene is predicted to be much stronger in individuals
with 22q11 deletions and schizophrenia, in which a
50% (or �65% when the non-deleted allele carries,
for example, the risk SNP rs175174 variant) de-
crease in ZDHHC8 activity levels is predicted.
ZDHHC8 encodes a transmembrane palmitoyl-
transferase that modifies, among other targets,
postsynaptic density protein of 95 kDa (PSD-95)
and could have an important role in excitatory syn-
aptic transmission (69).

TRACE AMINE RECEPTOR 4
Trace amine receptor 4 (TAAR6) was identified

in an LD study (12) of European-ancestry and Af-
rican–American families with schizophrenia that
previously showed evidence of linkage to 6q13–
q26 (70). This LD study (12) focused on subregion
q23.2, which contains several functional candidate
genes for schizophrenia. A primary screen using 31
SNPs and a follow-up higher-density screen using
23 SNPs over a 21.6-kb region highlighted TAAR6
(12) as being a prime positional candidate gene
from the schizophrenia susceptibility locus on
6q23.2. Two negative replication studies have been
reported (71, 72). However, an independent study
(73) implicated TAAR6 (which is a G-protein-cou-
pled receptor that is widely expressed in the brain
(12, 74)) in susceptibility to bipolar disorder.

EPSIN 4
Chromosome 5q33 is a region that has shown

evidence of linkage to schizophrenia in four inde-
pendent linkage studies. Four adjacent markers
(and associated haplotypes) at the 5� end of the
epsin 4 (EPN4) gene, which is located in this re-
gion, showed significant evidence of LD with
schizophrenia in a fine-mapping study that used
450 unrelated English, Irish, Welsh and Scottish
research subjects with schizophrenia and 450 an-
cestrally matched supernormal controls (13). The
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EPN4 gene encodes the clathrin-associated protein
enthoprotin, which has a role in the transport and
stability of neurotransmitter vesicles at the synapses
and within neurons (75). No replication studies
have been reported.

�-AMINOBUTYRIC ACID A RECEPTOR SUBUNIT
GENE CLUSTER

An early genome-wide linkage scan in Portu-
guese families with schizophrenia identified a risk
locus on chromosome 5q31–q35 (76) – a finding
supported by subsequent meta-analysis. A two-
stage candidate gene association approach focused
on a group of �-aminobutyric acid (GABA)A recep-
tor subunit genes (GABRA1, GABRA6, GABRB2,
GABRG2 and GABRP) within this linkage peak (14).
In the first stage, associations were detected in a Por-
tuguese patient sample with SNPs and haplotypes in
GABRA1, GABRP and GABRA6. The GABRA1 and
GABRP findings were replicated in the second stage in
an independent German family-based sample (14).
These genes are plausible candidates based on prior
speculation about the involvement of the GABA sys-
tem in schizophrenia (77, 78).

CANDIDATE GENES LOCATED IN THE
VICINITY OF LINKAGE SIGNALS
IDENTIFIED THROUGH CANDIDATE GENE
APPROACHES

The candidacy of the genes described in this sec-
tion is based on convergent genetic and biological
evidence. Although unproven, the recurrent obser-
vation of the clustering of candidate susceptibility
genes might indicate that more than one gene could
contribute to at least some of the linkage signals in
psychiatric disorders.

CATECHOL-O-METHYLTRANSFERASE

The catechol-O-methyltransferase (COMT)
gene is located in the 22q11 locus between the
PRODH and ZDHHC8 genes, and is a strong po-
sitional and functional candidate. COMT metabo-
lizes released dopamine, and variation in COMT
activity could have effects that are specific to the
prefrontal cortex (PFC). This regionally selective
effect of COMT might depend on the relatively
low abundance and non-synaptic localization of the
dopamine transporter in the PFC compared with
the striatum (79). A high-activity form of the en-
zyme (Val158) was proposed to increase suscepti-
bility to schizophrenia (79). Association studies us-
ing the clinical diagnosis of schizophrenia as
phenotype are equivocal (80–86), although this

form of the gene modulated executive function in
some studies, which is affected in individuals with
schizophrenia (79, 87). More-recent studies in an-
imal models, however, indicate that low activity of
this enzyme could be a risk factor for schizophrenia
and that COMT might function as part of the ge-
nome buffering capacity to counteract the effect of
other primary mutations that affect dopamine
turnover and signaling in the frontal cortex (26).
This prediction is supported by the results of a lon-
gitudinal follow-up study of children with 22q11
microdeletions. This study showed that the low-
activity form of the enzyme (Met158) is a risk fac-
tor for decline in prefrontal cortical volume and
cognition, and the consequent development of psy-
chotic symptoms, during adolescence in these chil-
dren (22). Overall, the potential contribution of
COMT to schizophrenia is likely to be complex. In
addition, the gene seems to have a functionally
complex allelic architecture, with some alleles
(Val158Met) determining the stability of the pro-
tein (88) and others determining the level of expres-
sion (86, 89).

REGULATOR OF G-PROTEIN SIGNALING 4
Regulator of G-protein signaling (RGS)4 was

initially identified as being the only transcript
(out of 7800 sampled by Mirnics et al. (90)) that
was consistently reduced in the DLPFC of indi-
viduals with schizophrenia. The gene maps to
1q21–22, 0.7 Mb from CAPON. Chowdari et al.
(91) genotyped 13 SNPs across a 300-kb seg-
ment spanning the gene in several independent
datasets and found weak evidence of association
with schizophrenia in each of the samples, al-
though not in an allele-consistent manner. In
most cases, association was present for a haplo-
type block stretching from intron 1 to several
kilobase pairs upstream of the transcription start
site. Independent replications have been re-
ported but negative studies also exist (20, 92–
94). Of the 19 human RGS transcripts, RGS4
shows the highest expression in the brain com-
pared with all other tissues and is abundant in the
cerebral cortex (95). RGS4 is a GTPase activator
that desensitizes Gi/o and Gq and, thereby, neg-
atively modulates G-protein-mediated signaling
by dopamine, metabotropic glutamate and mus-
carinic receptors (96).

CALCINEURIN � CATALYTIC SUBUNIT

Forebrain-specific calcineurin-knockout mice
were reported to have a spectrum of behavioral ab-
normalities related to altered behaviors observed in
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schizophrenia patients (97). Follow-up studies
identified calcineurin � catalytic subunit
(PPP3CC) as a potential schizophrenia susceptibil-
ity gene (98) and led to the proposal that alterations
in calcineurin signaling contribute to schizophrenia
pathogenesis. In support of this proposal, the gene
is downregulated in the hippocampus of individu-
als with schizophrenia (99). The genetic association
was not replicated, however, in a sample of Ash-
kenazi Jewish nuclear families (20). PPP3CC is lo-
cated at 8p21.3, 10 Mb from NRG1 but adjacent to
previously described linkage signals (98). Cal-
cineurin is a multifunctional calcium-dependent

serine/threonine phosphatase that is centrally in-
volved in many aspects of synaptic plasticity. It has
particular roles in glutamate and dopamine signal-
ing and their interactions, including the regulation
of DARPP32, a molecular node of convergence be-
tween dopamine receptor 1 and NMDA receptor
signaling pathways (97).

STATISTICAL SUPPORT AND
GENERALIZATION OF GENETIC FINDINGS

The statistical burden of proof is lower for genes
identified through systematic follow-up of linkage

Figure 1. Flow diagram of the schizophrenia genetics research process and its
potential application to drug discovery. In this scheme, the identification of
susceptibility genes by SNP-based association studies, coupled with the
generation and characterization of relevant mouse models and
endophenotype studies in humans, forms a comprehensive system with
which to identify the genes and molecular pathways involved in
schizophrenia pathogenesis. This knowledge base provides a framework for
mechanism-based drug-discovery efforts.
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signals compared with genes picked in an essen-
tially random fashion, irrespective of their location
relative to linkage signals (for details, see Ref.
(100)). Nevertheless, support for at least some of
the findings described (e.g. PRODH, DTNBP1,
NRG1, G72, DISC1 and COMT) seems to be
strong, based on a combination of criteria: the de-
gree of statistical significance, the reproducibility of
the associations in independent family samples, the
identification of independent rare risk alleles and
the consistent findings from animal model studies
and endophenotype-based studies in humans.

However, it is too early to draw firm conclusions
about the generalization of these findings among
different samples and populations based on the
published replication studies, primarily because of
issues regarding the extent of coverage of the impli-
cated loci, the structure of the samples used in rep-
lication studies and publication bias. One impor-
tant issue of concern regards the structure of the
tested replication samples. It is becoming increas-
ingly clear that, when allele frequencies differ nota-
bly among subpopulations that are not represented
equally among cases and controls (population strat-
ification), unreliable results can be obtained (4).
The possibility, therefore, that replication studies
using case–control samples represent false positives
(or negatives) must be considered seriously. This is
a problem that is relevant to all common complex
disorders but it is likely to be more pronounced in
genetic studies of psychiatric disorders, which are
confounded by a larger degree of phenotypic heter-
ogeneity. In addition, several of the employed ‘rep-
lication’ samples have been used repeatedly in ge-
netic association studies, making the issue of
multiple-testing corrections extremely relevant.
These are important considerations given some
striking inconsistencies among the variant alleles
and haplotypes implicated in replication studies for
at least some of the genes. It should be noted, how-
ever, that such inconsistencies are sometimes ob-
served even in more-reliable family-based samples
and can be explained in some instances by the pres-
ence of distinct variations that affect different func-
tional elements within the gene that have emerged
independently on a more recent ancestral back-
ground.

FUTURE DIRECTIONS OF GENETIC
RESEARCH

Clearly, there are still several ‘orphan’ linkage loci
that await the identification of positional candidate
genes, a task that will be facilitated by the sequenc-
ing of the human genome. It is likely that addi-
tional genes will also be identified through the ge-

nome-wide association studies that are starting to
be implemented. As more genes are identified, a
goal of future research will be to understand the
functional implications and interactions of the sus-
ceptibility genes and their variants in the context of
schizophrenia. Genetic studies of endophenotypes
(79) (provided they are designed to avoid all of the
pitfalls described earlier that are associated with ge-
netic studies of the clinical syndrome), in addition
to biological data from animal model studies,
promise to advance the understanding of the dis-
ease pathophysiology in the coming years.

The question of true biological interaction
among susceptibility genes is also extremely impor-
tant in the field of complex psychiatric genetics,
and might ultimately be better answered primarily
by using a combination of molecular-based and an-
imal-model-based approaches, as suggested by re-
cent studies (26,60). Understanding the interac-
tions between individual susceptibility elements
could eventually aid the specificity of diagnosis and
lead to the design of custom therapies with fewer
side-effects and more-positive long-term disease
outcomes for patients with specific genetic predis-
positions (Figure 1).
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