0
Get Alert
Please Wait... Processing your request... Please Wait.
You must sign in to sign-up for alerts.

Please confirm that your email address is correct, so you can successfully receive this alert.

CLINICAL SYNTHESIS   |    
Psychotherapy and Neuroimaging
Jay C. Fournier, Ph.D.; Rebecca B. Price, Ph.D.
FOCUS 2014;12:290-298. doi:10.1176/appi.focus.12.3.290
View Author and Article Information

Author Information and Disclosure:

Jay C. Fournier, Ph.D., Department of Psychiatry, University of Pittsburgh School of Medicine

Rebecca B. Price, Ph.D., Department of Psychiatry, University of Pittsburgh School of Medicine

The authors report no financial relationships with commercial interests.

Address correspondence to Dr. Fournier; e-mail: fournierjc@upmc.edu

Abstract

Technological advances in neuroimaging have enabled researchers to examine, in vivo, the relationship between psychotherapeutic interventions and markers of brain activity. This review focuses on two kinds of neuroimaging studies in psychotherapy: those that examine the patterns of brain activity associated with response to treatments and those that examine the changes that occur in brain activity during treatment. A general, hypothetical neural model of psychotherapy is presented, and support for the model is evaluated across anxiety disorders and major depression. Neuroimaging studies are broadly consistent in observing associations between response to psychotherapy and baseline activity in several key regions within the prefrontal cortex and limbic areas. These regions are involved in the generation and regulation of emotion, fear responding, and response to reward. Prepost examinations of change following psychotherapy also typically observe that psychological treatments for anxiety and depression can affect neural activity in these regions. Despite a general consensus that activity in these regions is associated with psychotherapy, substantial discrepancy persists regarding the precise direction of the observed relationships. Methodological challenges of the existing literature are considered, and future directions are discussed.

Abstract Teaser
Figures in this Article

Your Session has timed out. Please sign back in to continue.
Sign In Your Session has timed out. Please sign back in to continue.
Sign In to Access Full Content
 
Username
Password
Sign in via Athens (What is this?)
Athens is a service for single sign-on which enables access to all of an institution's subscriptions on- or off-site.
Not a subscriber?

Subscribe Now/Learn More

PsychiatryOnline subscription options offer access to the DSM-5 library, books, journals, CME, and patient resources. This all-in-one virtual library provides psychiatrists and mental health professionals with key resources for diagnosis, treatment, research, and professional development.

Need more help? PsychiatryOnline Customer Service may be reached by emailing PsychiatryOnline@psych.org or by calling 800-368-5777 (in the U.S.) or 703-907-7322 (outside the U.S.).

Figure 1. Neural Circuitry of General Emotion Dysregulation and High Negative Affect as Seen From Medial (center of brain [top]) and Lateral (outside of brain [bottom]) Views

Limbic regions (white) such as the amygdala, hippocampus, and insula react to emotional information. Emotional information feeds forward from limbic regions (white) to cortical regions (gray), including the anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), and finally to the dorsomedial and ventromedial prefrontal cortices (DMPFC, VMPFC). Prefrontal cortical regions (gray) including the ACC, DMPFC, VMPFC, as well as dorsolateral and ventrolateral prefrontal cortices (DLPFC, VLPFC), can provide top-down regulation over limbic regions (white arrows), modulating activity upward or downward depending on the context and goals.

+

References

Phillips  ML;  Ladouceur  CD;  Drevets  WC:  A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder.  Mol Psychiatry 2008; 13:829, 833–857
[CrossRef] | [PubMed]
 
Kupfer  DJ;  Frank  E;  Phillips  ML:  Major depressive disorder: new clinical, neurobiological, and treatment perspectives.  Lancet 2012; 379:1045–1055
[CrossRef] | [PubMed]
 
Davidson  RJ:  Affective style, psychopathology, and resilience: brain mechanisms and plasticity.  Am Psychol 2000; 55:1196–1214
[CrossRef] | [PubMed]
 
Beauregard  M;  Lévesque  J;  Bourgouin  P:  Neural correlates of conscious self-regulation of emotion.  J Neurosci 2001; 21:RC165
[PubMed]
 
de Carvalho  MR;  Dias  GP;  Cosci  F;  de-Melo-Neto  VL;  Bevilaqua  MC;  Gardino  PF;  Nardi  AE:  Current findings of fMRI in panic disorder: contributions for the fear neurocircuitry and CBT effects.  Expert Rev Neurother 2010; 10:291–303
[CrossRef] | [PubMed]
 
Eshel  N;  Roiser  JP:  Reward and punishment processing in depression.  Biol Psychiatry 2010; 68:118–124
[CrossRef] | [PubMed]
 
DeRubeis  RJ;  Siegle  GJ;  Hollon  SD:  Cognitive therapy versus medication for depression: treatment outcomes and neural mechanisms.  Nat Rev Neurosci 2008; 9:788–796
[CrossRef] | [PubMed]
 
Weingarten  CP;  Strauman  TJ:  Neuroimaging for psychotherapy research: Current trends.  Psychother Res  In press
 
Frewen  PA;  Dozois  DJ;  Lanius  RA:  Neuroimaging studies of psychological interventions for mood and anxiety disorders: empirical and methodological review.  Clin Psychol Rev 2008; 28:228–246
[CrossRef] | [PubMed]
 
McClure  EB;  Adler  A;  Monk  CS;  Cameron  J;  Smith  S;  Nelson  EE;  Leibenluft  E;  Ernst  M;  Pine  DS:  fMRI predictors of treatment outcome in pediatric anxiety disorders.  Psychopharmacology (Berl) 2007; 191:97–105
[CrossRef] | [PubMed]
 
Doehrmann  O;  Ghosh  SS;  Polli  FE;  Reynolds  GO;  Horn  F;  Keshavan  A;  Triantafyllou  C;  Saygin  ZM;  Whitfield-Gabrieli  S;  Hofmann  SG;  Pollack  M;  Gabrieli  JD:  Predicting treatment response in social anxiety disorder from functional magnetic resonance imaging.  JAMA Psychiatry 2013; 70:87–97
[CrossRef] | [PubMed]
 
Whelan  R;  Garavan  H:  When optimism hurts: inflated predictions in psychiatric neuroimaging.  Biol Psychiatry 201475:746–748
[CrossRef] | [PubMed]
 
Klumpp  H;  Fitzgerald  DA;  Phan  KL:  Neural predictors and mechanisms of cognitive behavioral therapy on threat processing in social anxiety disorder.  Prog Neuropsychopharmacol Biol Psychiatry 2013; 45:83–91
[CrossRef] | [PubMed]
 
Brody  AL;  Saxena  S;  Schwartz  JM;  Stoessel  PW;  Maidment  K;  Phelps  ME;  Baxter  LR  Jr:  FDG-PET predictors of response to behavioral therapy and pharmacotherapy in obsessive compulsive disorder.  Psychiatry Res 1998; 84:1–6
[CrossRef] | [PubMed]
 
Ball  TM;  Stein  MB;  Ramsawh  HJ;  Campbell-Sills  L;  Paulus  MP:  Single-subject anxiety treatment outcome prediction using functional neuroimaging.  Neuropsychopharmacology 2014; 39:1254–1261
[CrossRef] | [PubMed]
 
Olatunji  BO;  Ferreira-Garcia  R;  Caseras  X;  Fullana  MA;  Wooderson  S;  Speckens  A;  Lawrence  N;  Giampietro  V;  Brammer  MJ;  Phillips  ML;  Fontenelle  LF;  Mataix-Cols  D:  Predicting response to cognitive behavioral therapy in contamination-based obsessive-compulsive disorder from functional magnetic resonance imaging.  Psychol Med 2013; 1–13
 
Bryant  RA;  Felmingham  K;  Kemp  A;  Das  P;  Hughes  G;  Peduto  A;  Williams  L:  Amygdala and ventral anterior cingulate activation predicts treatment response to cognitive behaviour therapy for post-traumatic stress disorder.  Psychol Med 2008; 38:555–561
[CrossRef] | [PubMed]
 
Pizzagalli  DA:  Frontocingulate dysfunction in depression: toward biomarkers of treatment response.  Neuropsychopharmacology 2011; 36:183–206
[CrossRef] | [PubMed]
 
Siegle  GJ;  Carter  CS;  Thase  ME:  Use of FMRI to predict recovery from unipolar depression with cognitive behavior therapy.  Am J Psychiatry 2006; 163:735–738
[CrossRef] | [PubMed]
 
Siegle  GJ;  Thompson  WK;  Collier  A;  Berman  SR;  Feldmiller  J;  Thase  ME;  Friedman  ES:  Toward clinically useful neuroimaging in depression treatment: prognostic utility of subgenual cingulate activity for determining depression outcome in cognitive therapy across studies, scanners, and patient characteristics.  Arch Gen Psychiatry 2012; 69:913–924
[CrossRef] | [PubMed]
 
McGrath  CL;  Kelley  ME;  Dunlop  BW;  Holtzheimer Iii  PE;  Craighead  WE;  Mayberg  HS:  Pretreatment brain states identify likely nonresponse to standard treatments for depression.  Biol Psychiatry  In press
 
Yoshimura  S;  Okamoto  Y;  Onoda  K;  Matsunaga  M;  Okada  G;  Kunisato  Y;  Yoshino  A;  Ueda  K;  Suzuki  S;  Yamawaki  S:   Cognitive behavioral therapy for depression changes medial prefrontal and ventral anterior cingulate cortex activity associated with self-referential processing.  Soc Cogn Affect Neurosci 2014; 9:487–493
[CrossRef] | [PubMed]
 
Fu  CHY;  Williams  SCR;  Cleare  AJ;  Scott  J;  Mitterschiffthaler  MT;  Walsh  ND;  Donaldson  C;  Suckling  J;  Andrew  C;  Steiner  H;  Murray  RM:  Neural responses to sad facial expressions in major depression following cognitive behavioral therapy.  Biol Psychiatry 2008; 64:505–512
[CrossRef] | [PubMed]
 
Konarski  JZ;  Kennedy  SH;  Segal  ZV;  Lau  MA;  Bieling  PJ;  McIntyre  RS;  Mayberg  HS:  Predictors of nonresponse to cognitive behavioural therapy or venlafaxine using glucose metabolism in major depressive disorder.  J Psychiatry Neurosci 2009; 34:175–180
[PubMed]
 
Seminowicz  DA;  Mayberg  HS;  McIntosh  AR;  Goldapple  K;  Kennedy  S;  Segal  Z;  Rafi-Tari  S:  Limbic-frontal circuitry in major depression: a path modeling metanalysis.  Neuroimage 2004; 22:409–418
[CrossRef] | [PubMed]
 
McGrath  CL;  Kelley  ME;  Holtzheimer  PE;  Dunlop  BW;  Craighead  WE;  Franco  AR;  Craddock  RC;  Mayberg  HS:  Toward a neuroimaging treatment selection biomarker for major depressive disorder.  JAMA Psychiatry 2013; 70:821–829
[CrossRef] | [PubMed]
 
Dichter  GS;  Felder  JN;  Smoski  MJ:  The effects of Brief Behavioral Activation Therapy for Depression on cognitive control in affective contexts: an fMRI investigation.  J Affect Disord 2010; 126:236–244
[CrossRef] | [PubMed]
 
Ritchey  M;  Dolcos  F;  Eddington  KM;  Strauman  TJ;  Cabeza  R:  Neural correlates of emotional processing in depression: changes with cognitive behavioral therapy and predictors of treatment response.  J Psychiatr Res 2011; 45:577–587
[CrossRef] | [PubMed]
 
Forbes  EE;  Olino  TM;  Ryan  ND;  Birmaher  B;  Axelson  D;  Moyles  DL;  Dahl  RE:  Reward-related brain function as a predictor of treatment response in adolescents with major depressive disorder.  Cogn Affect  Behav Neurosci 2010; 10:107–118
[CrossRef]
 
Barsaglini  A;  Sartori  G;  Benetti  S;  Pettersson-Yeo  W;  Mechelli  A:  The effects of psychotherapy on brain function: a systematic and critical review.  Prog Neurobiol 2014; 114:1–14
[CrossRef] | [PubMed]
 
Quidé  Y;  Witteveen  AB;  El-Hage  W;  Veltman  DJ;  Olff  M:  Differences between effects of psychological versus pharmacological treatments on functional and morphological brain alterations in anxiety disorders and major depressive disorder: a systematic review.  Neurosci Biobehav Rev 2012; 36:626–644
[CrossRef] | [PubMed]
 
Lansing  K;  Amen  DG;  Hanks  C;  Rudy  L:  High-resolution brain SPECT imaging and eye movement desensitization and reprocessing in police officers with PTSD.  J Neuropsychiatry Clin Neurosci 2005; 17:526–532
[CrossRef] | [PubMed]
 
Pagani  M;  Högberg  G;  Salmaso  D;  Nardo  D;  Sundin  O;  Jonsson  C;  Soares  J;  Aberg-Wistedt  A;  Jacobsson  H;  Larsson  SA;  Hällström  T:  Effects of EMDR psychotherapy on 99mTc-HMPAO distribution in occupation-related post-traumatic stress disorder.  Nucl Med Commun 2007; 28:757–765
[CrossRef] | [PubMed]
 
Felmingham  K;  Kemp  A;  Williams  L;  Das  P;  Hughes  G;  Peduto  A;  Bryant  R:  Changes in anterior cingulate and amygdala after cognitive behavior therapy of posttraumatic stress disorder.  Psychol Sci 2007; 18:127–129
[CrossRef] | [PubMed]
 
Peres  JF;  Newberg  AB;  Mercante  JP;  Simão  M;  Albuquerque  VE;  Peres  MJ;  Nasello  AG:  Cerebral blood flow changes during retrieval of traumatic memories before and after psychotherapy: a SPECT study.  Psychol Med 2007; 37:1481–1491
[CrossRef] | [PubMed]
 
Nakao  T;  Nakagawa  A;  Yoshiura  T;  Nakatani  E;  Nabeyama  M;  Yoshizato  C;  Kudoh  A;  Tada  K;  Yoshioka  K;  Kawamoto  M;  Togao  O;  Kanba  S:  Brain activation of patients with obsessive-compulsive disorder during neuropsychological and symptom provocation tasks before and after symptom improvement: a functional magnetic resonance imaging study.  Biol Psychiatry 2005; 57:901–910
[CrossRef] | [PubMed]
 
Yamanishi  T;  Nakaaki  S;  Omori  IM;  Hashimoto  N;  Shinagawa  Y;  Hongo  J;  Horikoshi  M;  Tohyama  J;  Akechi  T;  Soma  T;  Iidaka  T;  Furukawa  TA:  Changes after behavior therapy among responsive and nonresponsive patients with obsessive-compulsive disorder.  Psychiatry Res 2009; 172:242–250
[CrossRef] | [PubMed]
 
Goldin  PR;  Ziv  M;  Jazaieri  H;  Hahn  K;  Heimberg  R;  Gross  JJ:  Impact of cognitive behavioral therapy for social anxiety disorder on the neural dynamics of cognitive reappraisal of negative self-beliefs: randomized clinical trial.  JAMA Psychiatry 2013; 70:1048–1056
[CrossRef] | [PubMed]
 
Prasko  J;  Horácek  J;  Záleský  R;  Kopecek  M;  Novák  T;  Pasková  B;  Skrdlantová  L;  Belohlávek  O;  Höschl  C:  The change of regional brain metabolism (18FDG PET) in panic disorder during the treatment with cognitive behavioral therapy or antidepressants.  Neuroendocrinol Lett 2004; 25:340–348
[PubMed]
 
Sakai  Y;  Kumano  H;  Nishikawa  M;  Sakano  Y;  Kaiya  H;  Imabayashi  E;  Ohnishi  T;  Matsuda  H;  Yasuda  A;  Sato  A;  Diksic  M;  Kuboki  T:  Changes in cerebral glucose utilization in patients with panic disorder treated with cognitive-behavioral therapy.  Neuroimage 2006; 33:218–226
[CrossRef] | [PubMed]
 
Kircher  T;  Arolt  V;  Jansen  A;  Pyka  M;  Reinhardt  I;  Kellermann  T;  Konrad  C;  Lueken  U;  Gloster  AT;  Gerlach  AL;  Ströhle  A;  Wittmann  A;  Pfleiderer  B;  Wittchen  HU;  Straube  B:  Effect of cognitive-behavioral therapy on neural correlates of fear conditioning in panic disorder.  Biol Psychiatry 2013; 73:93–101
[CrossRef] | [PubMed]
 
Paquette  V;  Lévesque  J;  Mensour  B;  Leroux  J-M;  Beaudoin  G;  Bourgouin  P;  Beauregard  M:  “Change the mind and you change the brain”: effects of cognitive-behavioral therapy on the neural correlates of spider phobia.  Neuroimage 2003; 18:401–409
[CrossRef] | [PubMed]
 
Straube  T;  Glauer  M;  Dilger  S;  Mentzel  H-J;  Miltner  WHR:  Effects of cognitive-behavioral therapy on brain activation in specific phobia.  Neuroimage 2006; 29:125–135
[CrossRef] | [PubMed]
 
Hauner  KK;  Mineka  S;  Voss  JL;  Paller  KA:  Exposure therapy triggers lasting reorganization of neural fear processing.  Proc Natl Acad Sci U S A 2012; 109(23):9203–9208
 
Schienle  A;  Schäfer  A;  Hermann  A;  Rohrmann  S;  Vaitl  D:  Symptom provocation and reduction in patients suffering from spider phobia: an fMRI study on exposure therapy.  Eur Arch Psychiatry Clin Neurosci 2007; 257:486–493
[CrossRef] | [PubMed]
 
Furmark  T;  Tillfors  M;  Marteinsdottir  I;  Fischer  H;  Pissiota  A;  Långström  B;  Fredrikson  M:  Common changes in cerebral blood flow in patients with social phobia treated with citalopram or cognitive-behavioral therapy.  Arch Gen Psychiatry 2002; 59:425–433
[CrossRef] | [PubMed]
 
Beutel  ME;  Stark  R;  Pan  H;  Silbersweig  D;  Dietrich  S:  Changes of brain activation pre- post short-term psychodynamic inpatient psychotherapy: an fMRI study of panic disorder patients.  Psychiatry Res 2010; 184:96–104
[CrossRef] | [PubMed]
 
Kennedy  SH;  Konarski  JZ;  Segal  ZV;  Lau  MA;  Bieling  PJ;  McIntyre  RS;  Mayberg  HS:  Differences in brain glucose metabolism between responders to CBT and venlafaxine in a 16-week randomized controlled trial.  Am J Psychiatry 2007; 164:778–788
[CrossRef] | [PubMed]
 
Brody  AL;  Saxena  S;  Stoessel  P;  Gillies  LA;  Fairbanks  LA;  Alborzian  S;  Phelps  ME;  Huang  S-C;  Wu  H-M;  Ho  ML;  Ho  MK;  Au  SC;  Maidment  K;  Baxter  LR  Jr:  Regional brain metabolic changes in patients with major depression treated with either paroxetine or interpersonal therapy: preliminary findings.  Arch Gen Psychiatry 2001; 58:631–640
[CrossRef] | [PubMed]
 
Goldapple  K;  Segal  Z;  Garson  C;  Lau  M;  Bieling  P;  Kennedy  S;  Mayberg  H:  Modulation of cortical-limbic pathways in major depression: treatment-specific effects of cognitive behavior therapy.  Arch Gen Psychiatry 2004; 61:34–41
[CrossRef] | [PubMed]
 
Buchheim  A;  Viviani  R;  Kessler  H;  Kächele  H;  Cierpka  M;  Roth  G;  George  C;  Kernberg  OF;  Bruns  G;  Taubner  S:  Changes in prefrontal-limbic function in major depression after 15 months of long-term psychotherapy.  PLoS ONE 2012; 7:e33745
[CrossRef] | [PubMed]
 
Dichter  GS;  Felder  JN;  Petty  C;  Bizzell  J;  Ernst  M;  Smoski  MJ:  The effects of psychotherapy on neural responses to rewards in major depression.  Biol Psychiatry 2009; 66:886–897
[CrossRef] | [PubMed]
 
Lehto  SM;  Tolmunen  T;  Joensuu  M;  Saarinen  PI;  Valkonen-Korhonen  M;  Vanninen  R;  Ahola  P;  Tiihonen  J;  Kuikka  J;  Lehtonen  J.  Changes in midbrain serotonin transporter availability in atypically depressed subjects after one year of psychotherapy.  Prog Neuropsychopharmacol Biol Psychiatry 2008; 32(1):229–237
[CrossRef] | [PubMed]
 
Karlsson  H;  Hirvonen  J;  Salminen  J;  Hietala  J:  Increased serotonin receptor 1A binding in major depressive disorder after psychotherapy, but not after SSRI pharmacotherapy, is related to improved social functioning capacity.  Psychother Psychosom 2013; 82:260–261
[CrossRef] | [PubMed]
 
DeRubeis  RJ;  Cohen  ZD;  Forand  NR;  Fournier  JC;  Gelfand  LA;  Lorenzo-Luaces  L:  The Personalized Advantage Index: translating research on prediction into individualized treatment recommendations. A demonstration.  PLoS ONE 2014; 9:e83875
[CrossRef] | [PubMed]
 
Linden  DEJ:  How psychotherapy changes the brain—the contribution of functional neuroimaging.  Mol Psychiatry 2006; 11:528–538
[CrossRef] | [PubMed]
 
Barch  DM;  Mathalon  DH:  Using brain imaging measures in studies of procognitive pharmacologic agents in schizophrenia: psychometric and quality assurance considerations.  Biol Psychiatry 2011; 70:13–18
[CrossRef] | [PubMed]
 
Goldin  P;  Ziv  M;  Jazaieri  H;  Hahn  K;  Gross  JJ:  MBSR vs aerobic exercise in social anxiety: fMRI of emotion regulation of negative self-beliefs.  Soc Cogn Affect Neurosci 2013; 8:65–72
[CrossRef] | [PubMed]
 
Deldin  PJ;  Chiu  P:  Cognitive restructuring and EEG in major depression.  Biol Psychol 2005; 70:141–151
[CrossRef] | [PubMed]
 
Roffman  JL;  Marci  CD;  Glick  DM;  Dougherty  DD;  Rauch  SL:  Neuroimaging and the functional neuroanatomy of psychotherapy.  Psychol Med 2005; 35:1385–1398
[CrossRef] | [PubMed]
 
References Container
+
+

CME Activity

Add a subscription to complete this activity and earn CME credit.
Sample questions:
1.
Which of the following best represents the role of psychotherapy in the treatment of bipolar disorder?

See Swartz and Swanson; Results, p 252
2.
An evidence-based psychotherapy that has not been tested as treatment for individuals with bipolar disorder is which of the following:

See Swartz and Swanson; Table 2: Description of Evidence-Based, Bipolar Specific Psychotherapies, p 259
3.
How does psychopathology develop within the framework of metacognitive theory?

See Mundy and Hofmann; Meta-Cognitive Therapy, p 267
Submit a Comments
Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
Comments are moderated and will appear on the site at the discertion of APA editorial staff.

* = Required Field
(if multiple authors, separate names by comma)
Example: John Doe